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UNIT I
INTRODUCTION

The process of computation was started from working on a single processor. This uni-
processor computing can be termed as centralized computing.

A distributed system is a collection of independent computers, interconnected via a
network, capable of collaborating on a task. Distributed computing is computing
performed in a distributed system.

A distributed system is a collection of independent entities that cooperate to solve a problem
that cannot be individually solved. Distributed computing is widely used due to
advancements in machines; faster and cheaper networks. In distributed systems, the entire
network will be viewed as a computer. The multiple systems connected to the network will
appear as a single system to the user.

Features of Distributed Systems:

No common physical clock - It introduces the element of “distribution” in the system and
gives rise to the inherent asynchrony amongst the processors.

No shared memory - A key feature that requires message-passing for communication. This
feature implies the absence of the common physical clock.

Geographical separation — The geographically wider apart that the processors are, the
more representative is the system of a distributed system.

Autonomy and heterogeneity — Here the processors are “loosely coupled” in that they have
different speeds and each can be running a different operating system.

Issues in distributed systems
Heterogeneity

Openness

Security

Scalability

Failure handling
Concurrency

Transparency

Quality of service

1.2 Relation to Computer System Components
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Fig 1.1: Example of a Distributed System




As shown in Fig 1.1, Each computer has a memory-processing unit and the computers are
connected by a communication network. Each system connected to the distributed networks
hosts distributed software which is a middleware technology. This drives the Distributed
System (DS) at the same time preserves the heterogeneity of the DS. The term computation
or run in a distributed system is the execution of processes to achieve a common goal.
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Fig 1.2: Interaction of layers of network

The interaction of the layers of the network with the operating system and
middleware is shown in Fig 1.2. The middleware contains important library functions for
facilitating the operations of DS.

The distributed system uses a layered architecture to break down the complexity of system
design. The middleware is the distributed software that drives the distributed system, while
providing transparency of heterogeneity at the platform level

Examples of middleware: Object Management Group’s (OMG), Common Object Request
Broker Architecture (CORBA) [36], Remote Procedure Call (RPC), Message Passing
Interface (MPI)

1.3 Motivation
The following are the key points that acts as a driving force behind DS:

Inherently distributed computations: DS can process the computations at geographically
remote locations.
Resource sharing: The hardware, databases, special libraries can be shared between
systems without owning a dedicated copy or a replica. This is cost effective and reliable.
Access to geographically remote data and resources: Resources such as centralized
servers can also be accessed from distant locations.
Enhanced reliability: DS provides enhanced reliability, since they run on multiple copies of
resources.
The term reliability comprises of:

1. Availability: The resource/ service provided by the resource should be accessible

atall times
2. Integrity: the value/state of the resource should be correct and consistent.




3. Fault-Tolerance: Ability to recover from system failures
Increased performance/cost ratio: The resource sharing and remote access features of DS
naturally increase the performance / cost ratio.
Scalable: The number of systems operating in a distributed environment can be increased as
the demand increases.

1.4 MESSAGE-PASSING SYSTEMS VERSUS SHARED MEMORY SYSTEMS
Communication among processors takes place via shared data variables, and

control variables for synchronization among the processors. The communicationsbetween

the tasks in multiprocessor systems take place through two main modes:

Message passing systems:
e This allows multiple processes to read and write data to the message queue
without being connected to each other.
e Messages are stored on the queue until their recipient retrieves them.

Shared memory systems:

e The shared memory is the memory that can be simultaneously accessed by
multiple processes. This is done so that the processes can communicate with each
other.

e Communication among processors takes place through shared data variables, and
control variables for synchronization among the processors.

e Semaphores and monitors are common synchronization mechanisms on shared
memory systems.

e When shared memory model is implemented in a distributed environment, it is
termed as distributed shared memaory.
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Fig 1.11: Inter-process communication models

Emulating message-passing on a shared memory system (MP — SM)

e The shared memory system can be made to act as message passing system. The
shared address space can be partitioned into disjoint parts, one part being
assigned to each processor.

e Send and receive operations care implemented by writing to and reading from the
destination/sender processor’s address space. The read and write operations are
synchronized.

e Specifically, a separate location can be reserved as the mailbox for each ordered
pair of processes.

Emulating shared memory on a message-passing system (SM — MP)
e This is also implemented through read and write operations. Each shared
location can be modeled as a separate process. Write to a shared location is




emulated by sending an update message to the corresponding owner process and
read operation to a shared location is emulated by sending a query message to the
OWnNer process.

e This emulation is expensive as the processes has to gain access to other process
memory location. The latencies involved in read and write operations may be
high even when using shared memory emulation because the read and write
operations are implemented by using network-wide communication.

1.5 PRIMITIVES FOR DISTRIBUTED COMMUNICATION

Blocking / Non blocking / Synchronous / Asynchronous

e Message send and message receive communication primitives are done through
Send() and Receive(), respectively.

e A Send primitive has two parameters: the destination, and the buffer in the user
space that holds the data to be sent.

e The Receive primitive also has two parameters: the source from which the data is
to be received and the user buffer into which the data is to be received.

There are two ways of sending data when the Send primitive is called:

e Buffered: The standard option copies the data from the user buffer to the kernel
buffer. The data later gets copied from the kernel buffer onto the network. For the
Receive primitive, the buffered option is usually required because the data may
already have arrived when the primitive is invoked, and needs a storage place in
the kernel.

e Unbuffered: The data gets copied directly from the user buffer onto the network.

Blocking primitives

e The primitive commands wait for the message to be delivered. The execution of
the processes is blocked.

e The sending process must wait after a send until an acknowledgement is made
bythe receiver.

e The receiving process must wait for the expected message from the sending
process

e A primitive is blocking if control returns to the invoking process after the
processing for the primitive completes.

Non Blocking primitives

e |If send is nonblocking, it returns control to the caller immediately, before the
message Is sent.

e The advantage of this scheme is that the sending process can continue computing
in parallel with the message transmission, instead of having the CPU go idle.

e This is a form of asynchronous communication.

e A primitive is non-blocking if control returns back to the invoking process
immediately after invocation, even though the operation has not completed.

e For a non-blocking Send, control returns to the process even before the data
iscopied out of the user buffer.

For a non-blocking Receive, control returns to the process even before thedatamay have
arrived from the sender.

Synchronous
e A Send or a Receive primitive is synchronous if both the Send() and Receive()
handshake with each other.
e The processing for the Send primitive completes only after the invoking
processor learns




e The processing for the Receive primitive completes when the data to be
received is copied into the receiver’s user buffer.

Asynchronous

e A Send primitive is said to be asynchronous, if control returns back to the
invoking process after the data item to be sent has been copied out of the user-
specified buffer.

e For non-blocking primitives, a return parameter on the primitive call returns a
system-generated handle which can be later used to check the status of
completion of the call.

e The process can check for the completion:

o checking if the handle has been flagged or posted

o issue a Wait with a list of handles as parameters: usually blocks until one
of the parameter handles is posted.

The send and receive primitives can be implemented in four modes:
e Blocking synchronous
¢ Non- blocking synchronous
e Blocking asynchronous
e Non- blocking asynchronous

Four modes of send operation
Blocking synchronous Send:
e The data gets copied from the user buffer to the kernel buffer and is then sent over
the network.
e After the data is copied to the receiver’s system buffer and a Receive call has been
issued, an acknowledgement back to the sender causes control to return to the
process that invoked the Send operation and completes the Send.

Non-blocking synchronous Send:

e Control returns back to the invoking process as soon as the copy of data from the user
buffer to the kernel buffer is initiated.

e A parameter in the non-blocking call also gets set with the handle of a location that
the user process can later check for the completion of the synchronous send
operation.

e The location gets posted after an acknowledgement returns from the receiver.

e The user process can keep checking for the completion of the non-blocking
synchronous Send by testing the returned handle, or it can invoke the blocking Wait
operation on the returned handle

Blocking asynchronous Send:

o The user process that invokes the Send is blocked until the data is copied from the
user’s buffer to the kernel buffer.

Non-blocking asynchronous Send:

e The user process that invokes the Send is blocked until the transfer of the data from
the user’s buffer to the kernel buffer is initiated.

e Control returns to the user process as soon as this transfer is initiated, and a parameter
in the non-blocking call also gets set with the handle of a location that the user
process can check later using the Wait operation for the completion of the
asynchronous Send.

The asynchronous Send completes when the data has been copied out of the user’s
buffer. The checking for the completion may be necessary if the user wants to reuse the
buffer from which the data was sent.

Modes of receive operation
Blocking Receive:




The Receive call blocks until the data expected arrives and is written in the specified
user buffer. Then control is returned to the user process.

Non-blocking Receive:

e The Receive call will cause the kernel to register the call and return the handle
of a location that the user process can later check for the completion of the
non-blocking Receive operation.

e This location gets posted by the kernel after the expected data arrives and is
copied to the user-specified buffer. The user process can check for then
completion of the non-blocking Receive by invoking the Wait operation on the
returned handle.

1S _C S o w w

process i

buffer_i

kernel i ---

kernel_j =======

buffer_j

process j

(a) Blocking sync. Send, blocking Receive  (b) Nonblocking sync. Send, nonblocking Receive

. Se= S8.C Sa W W
process i
PNS C
buffer_i
kernel | ===t-==s \ ------------------------ \ .................
(c) Blocking async. Send (d) Non-blocking async. Send

mmmmm Duration to copy data from or to user buffer

—— Duration in which the process issuing send or receive primitive is blocked

S Send primitive issued S_C  processing for Send completes

R Receive primitive issued R_C  processing for Receive completes
P The completion of the previously initiated nonblocking operation

14 Process may issue Wait to check completion of nonblocking operation




Processor Synchrony

Processor synchrony indicates that all the processors execute in lock-step with their clocks
synchronized.

To ensure that no processor begins executing the next step of code until all the processors
have completed executing the previous steps ofcode assigned to each of the processors.

Libraries and standards

There exists a wide range of primitives for message-passing. The message-passing interface

(MPI) library and the PVM (parallel virtual machine) library are used largely by the

scientific community

e Message Passing Interface (MPI): This is a standardized and portable message-
passing system to function on a wide variety of parallel computers. MPI primarily
addresses the message-passing parallel programming model: data is moved from the
address space of one process to that of another process through cooperative
operations on each process.

Parallel Virtual Machine (PVM): It is a software tool for parallel networking of
computers. It is designed to allow a network of heterogeneous Unix and/or Windows
machines to be used as a single distributed parallel processor.

Remote Procedure Call (RPC): The Remote Procedure Call (RPC) is a common
model of request reply protocol. In RPC, the procedure need not exist in the same
address space as the calling procedure.

Remote Method Invocation (RMI): RMI (Remote Method Invocation) is a way that
a programmer can write object-oriented programming in which objects on different
computers can interact in a distributed network.

Remote Procedure Call (RPC): RPC is a powerful technique for constructing
distributed, client-server based applications. In RPC, the procedure need not exist in
the same address space as the calling procedure. The two processes may be on the
same system, or they may be on different systems with a network connecting them.

o Common Object Request Broker Architecture (CORBA): CORBA describes a
messaging mechanism by which objects distributed over a network can communicate with
each other irrespective of the platform and language used to develop those objects.

1.6 SYNCHRONOUS VS ASYNCHRONOUS EXECUTIONS
The execution of process in distributed systems may be synchronous or asynchronous.

Asynchronous Execution:

A communication among processes is considered asynchronous, when every
communicating process can have a different observation of the order of the messages being
exchanged. In an asynchronous execution:

o there is no processor synchrony and there is no bound on the drift rate of processor
clocks

o message delays are finite but unbounded

o no upper bound on the time taken by a process
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Fig: Asynchronous execution in message passing system

Synchronous Execution:
A communication among processes is considered synchronous when every process
observes the same order of messages within the system. In an synchronous execution:

o processors are synchronized and the clock drift rate between any two processors is
bounded
o message delivery times are such that they occur in one logical step or round
o upper bound on the time taken by a process to execute a
step.
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Emulating an asynchronous system by a synchronous system (A — S)

An asynchronous program can be emulated on a synchronous system fairly trivially as the
synchronous system is a special case of an asynchronous system — all communication
finishes within the same round in which it is initiated.

Emulating a synchronous system by an asynchronous system (S — A)
A synchronous program can be emulated on an asynchronous system using a tool called
synchronizer.

Emulation for a fault free system
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Fig 1.15: Emulations in a failure free message passing system
If system A can be emulated by system B, denoted A/B, and if a problem is not solvable in
B, then it is also not solvable in A. If a problem is solvable in A, it is also solvable in B.
Hence, in a sense, all four classes are equivalent in terms of computability in failure-free
systems.

1.7 DESIGN ISSUES AND CHALLENGES IN DISTRIBUTED SYSTEMS
The design of distributed systems has numerous challenges. They can be categorized
into:

o Issues related to system and operating systems design
o Issues related to algorithm design
o Issues arising due to emerging technologies

The above three classes are not mutually exclusive.

1.7.1 Issues related to system and operating systems design

The following are some of the common challenges to be addressed in designing a
distributed system from system perspective:
> Communication: This task involves designing suitable communication mechanisms
among the various processes in the networks.
Examples: RPC, RMI

> Processes: The main challenges involved are: process and thread management at
both client and server environments, migration of code between systems, design of software
and mobile agents.

> Naming: Devising easy to use and robust schemes for names, identifiers, and
addresses is essential for locating resources and processes in a transparent and scalable
manner. The remote and highly varied geographical locations make this task difficult.

> Synchronization: Mutual exclusion, leader election, deploying physical clocks,
global state recording are some synchronization mechanisms.

> Data storage and access Schemes: Designing file systems for easy and efficient data
storage with implicit accessing mechanism is very much essential for distributed operation

> Consistency and replication: The notion of Distributed systems goes hand in hand
with replication of data, to provide high degree of scalability. The replicas should be handed
with care since data consistency is prime issue.

> Fault tolerance: This requires maintenance of fail proof links, nodes, and processes.
Some of the common fault tolerant techniques are resilience, reliable communication,
distributed commit, checkpointing and recovery, agreement and consensus, failure detection,
and self-stabilization.

> Security: Cryptography, secure channels, access control, key management —
generation and distribution, authorization, and secure group management are some of the
security measure that is imposed on distributed systems.

> Applications Programming Interface (API) and transparency: The user
friendliness and ease of use is very important to make the distributed services to be used by
wide community. Transparency, which is hiding inner implementation policy from users, is
of the following types:

. Access transparency: hides differences in data representation
. Location transparency: hides differences in locations y providing uniform access to
data located at remote locations.




. Migration transparency: allows relocating resources without changing names.

" Replication transparency: Makes the user unaware whether he is working on
original or replicated data.

" Concurrency transparency: Masks the concurrent use of shared resources for the
user.

" Failure transparency: system being reliable and fault-tolerant.

> Scalability and modularity: The algorithms, data and services must be as distributed
as possible. Various techniques such as replication, caching and cache management, and
asynchronous processing help to achieve scalability.

1.7.2 Algorithmic challenges in distributed computing

> Designing useful execution models and frameworks

The interleaving model, partial order model, input/output automata model and the Temporal
Logic of Actions (TLA) are some examples of models that provide different degrees of
infrastructure.

> Dynamic distributed graph algorithms and distributed routing algorithms

o The distributed system is generally modeled as a distributed graph.

o Hence graph algorithms are the base for large number of higher level
communication,data dissemination, object location, and object search functions.

o These algorithms must have the capacity to deal with highly dynamic graph
characteristics. They are expected to function like routing algorithms.

o The performance of these algorithms has direct impact on user-perceived latency, data
traffic and load in the network.

> Time and global state in a distributed system

o The geographically remote resources demands the synchronization based on logical
time.

o Logical time is relative and eliminates the overheads of providing physical time for
applications. Logical time can

(i) Capture the logic and inter-process dependencies

(i) track the relative progress at each process

o Maintaining the global state of the system across space involves the role of time
dimension for consistency. This can be done with extra effort in a coordinated manner.

o Deriving appropriate measures of concurrency also involves the time dimension, as
theexecution and communication speed of threads may vary a lot.

> Synchronization/coordination mechanisms

o Synchronization is essential for the distributed processes to facilitate concurrent
execution without affecting other processes.

. The synchronization mechanisms also involve resource management and
concurrency management mechanisms.

o Some techniques for providing synchronization are:

v Physical clock synchronization: Physical clocks usually diverge in their values due
to hardware limitations. Keeping them synchronized is a fundamental challenge to maintain
common time.

v Leader election: All the processes need to agree on which process will play the
roleof a distinguished process or a leader process. A leader is necessary even for many
distributed algorithms because there is often some asymmetry.

v Mutual exclusion: Access to the critical resource(s) has to be coordinated.

v Deadlock detection and resolution: This is done to avoid duplicate work,
and deadlock resolution should be coordinated to avoid unnecessary aborts of
processes.




v Termination detection: cooperation among the processes to detect the specific global
state of quiescence.

v Garbage collection: Detecting garbage requires coordination among the processes.

> Group communication, multicast, and ordered message delivery

o A group is a collection of processes that share a common context and collaborate on a
common task within an application domain. Group management protocols are needed for
group communication wherein processes can join and leave groups dynamically, or fail.

> Monitoring distributed events and predicates

o Predicates defined on program variables that are local to different processes are used
for specifying conditions on the global system state.
J On-line algorithms for monitoring such predicates are hence important.

o The specification of such predicates uses physical or logical time relationships.

> Distributed program design and verification tools

Methodically designed and verifiably correct programs can greatly reduce the overhead of
software design, debugging, and engineering. Designing these is a big challenge.

> Debugging distributed programs

Debugging distributed programs is much harder because of the concurrency and replications.
Adequate debugging mechanisms and tools are need of the hour.

> Data replication, consistency models, and caching

o Fast access to data and other resources is important in distributed systems.

Managing replicas and their updates faces concurrency problems.
o Placement of the replicas in the systems is also a challenge because resources
usuallycannot be freely replicated.
> World Wide Web design — caching, searching, scheduling
o WWW is a commonly known distributed system.
o The issues of object replication and caching, prefetching of objects have to be done on
WWW also.
o Object search and navigationon the web are important functions in the operation of
the web.
> Distributed shared memory abstraction
o A shared memory Is easier to implement since it does not involve managing the
communication tasks.
o The communication is done by the middleware by message passing.
o The overhead of shared memory is to be dealt by the middleware technology.
o Some of the methodologies that does the task of communication in shared memory
distributed systems are:
v’ Wait-free algorithms: The ability of a process to complete its execution irrespective
of the actions of other processes is wait free algorithm. They control the access to shared
resources in the shared memory abstraction. They are expensive.
v Mutual exclusion: Concurrent access of processes to a shared resource or data is
executed in mutually exclusive manner. Only one process is allowed to execute the critical
section at any given time. In a distributed system, shared variables or a local kernel cannot
be used to implement mutual exclusion. Message passing is the sole means for implementing
distributed mutual exclusion.

v Register constructions: Architectures must be designed in such a way that,
registersallows concurrent access without any restrictions on the concurrency permitted.

> Reliable and fault-tolerant distributed systems

The following are some of the fault tolerant strategies:




v Consensus algorithms: Consensus algorithms allow correctly functioning processes
to reach agreement among themselves in spite of the existence of malicious processes. The
goal of the malicious processes is to prevent the correctly functioning processes from
reaching agreement. The malicious processes operate by sending messages with misleading
information, to confuse the correctly functioning processes.

v Replication and replica management: The Triple Modular Redundancy (TMR)
technique is used in software and hardware implementation. TMR is a fault-tolerant form of
N-modular redundancy, in which three systems perform a process and that result is
processed by a majority-voting system to produce a single output.

v Voting and quorum systems: Providing redundancy in the active or passive
components in the system and then performing voting based on some quorum criterion is a
classical way of dealing with fault-tolerance. Designing efficient algorithms for this
purposeis the challenge.

v Distributed databases and distributed commit: The distributed databases should
also follow atomicity, consistency, isolation and durability (ACID) properties.

v Self-stabilizing systems: A self-stabilizing algorithm guarantee to take the system to
a good state even if a bad state were to arise due to some error. Self-stabilizing algorithms
require some in-built redundancy to track additional variables of the state and do extra work.
v Checkpointing and recovery algorithms: Checkpointing is periodically recording
the current state on secondary storage so that, in case of a failure. The entire computation is
not lost but can be recovered from one of the recently taken checkpoints. Checkpointing in

distributed environment is difficult because if the checkpoints at the different processes are

not coordinated, the local checkpoints may become useless because they are inconsistent with
the checkpoints at other processes.

v Failure detectors: The asynchronous distributed do not have a bound on the message

transmission time. This makes the message passing very difficult, since the receiver do not

know the waiting time. Failure detectors probabilistically suspect another process as having

failed and then converge on a determination of the up/down status of the suspected process.

> Load balancing

The objective of load balancing is to gain higher throughput, and reduce the user

perceived latency. Load balancing may be necessary because of a variety off actors such

as high network traffic or high request rate causing the network connection to be a

bottleneck, or high computational load. The following are some forms of load balancing:

v Data migration: The ability to move data around in the system, based on the access

pattern of the users

v Computation migration: The ability to relocate processes in order to perform

are distribution of the workload.

v Distributed scheduling: This achieves a better turnaround time for the users by

using idle processing power in the system more efficiently.

> Real-time scheduling

Real-time scheduling becomes more challenging when a global view of the system state is
absent with more frequent on-line or dynamic changes. The message propagation delays
which are network-dependent are hard to control or predict. This is an hindrance to meet the
QoS requirements of the network.

> Performance

User perceived latency in distributed systems must be reduced. The common issues in
performance:

v Metrics: Appropriate metrics must be defined for measuring the performance of
theoretical distributed algorithms and its implementation.

v Measurement methods/tools: The distributed system is a complex entity
appropriate methodology and tools must be developed for measuring the performance
metrics.




1.7.3 Applications of distributed computing and newer challenges

The deployment environment of distributed systems ranges from mobile systems to
cloud storage. All the environments have their own challenges:
> Mobile systems

o Mobile systems which use wireless communication in shared broadcast
medium have issues related to physical layer such as transmission range,
power, battery power consumption, interfacing with wired internet, signal
processing and interference.

o The issues pertaining to other higher layers include routing, location
management, channel allocation, localization and position estimation, and
mobility management.

o Apart from the above mentioned common challenges, the architectural
differences of the mobile network demands varied treatment. The two
architectures are:

v Base-station approach (cellular approach): The geographical region is divided into
hexagonal physical locations called cells. The powerful base station transmits signals to all
other nodes in its range

v" Ad-hoc network approach: This is an infrastructure-less approach which do not
haveany base station to transmit signals. Instead all the responsibility is distributed among
the mobile nodes.

v It is evident that both the approaches work in different environment with different
principles of communication. Designing a distributed system to cater the varied need is a
great challenge.

> Sensor networks

o A sensor is a processor with an electro-mechanical interface that is capable of
sensing physical parameters.

o They are low cost equipment with limited computational power and battery
life. They are designed to handle streaming data and route it to external
computer network and processes.

o They are susceptible to faults and have to reconfigure themselves.

o These features introduces a whole new set of challenges, such as position
estimation and time estimation when designing a distributed system .

> Ubiquitous or pervasive computing

o In Ubiquitous systems the processors are embedded in the environment to
perform application functions in the background.

o Examples: Intelligent devices, smart homes etc.

o They are distributed systems with recent advancements operating in wireless
environments through actuator mechanisms.

o They can be self-organizing and network-centric with limited resources.
> Peer-to-peer computing

o Peer-to-peer (P2P) computing is computing over an application layer
networkwhere all interactions among the processors are at a same level.

o This is a form of symmetric computation against the client sever paradigm.

o They are self-organizing with or without regular structure to the network.
Some of the key challenges include: object storage mechanisms, efficientobject lookup, and retrieval in a
scalable manner; dynamic reconfiguration with nodes as well as objects joining and leaving the network
randomly;replication strategies to expedite object search; tradeoffs between object size latency and table
sizes; anonymity, privacy, and security
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Publish-subscribe, content distribution, and multimedia
o The users in present day require only the information of interest.
o In a dynamic environment where the information constantly fluctuates there
isgreat demand for
o Publish: an efficient mechanism for distributing this information
o Subscribe: an efficient mechanism to allow end users to indicate interest in
receiving specific kinds of information
o An efficient mechanism for aggregating large volumes of published
information and filtering it as per the user’s subscription filter.
o Content distribution refers to a mechanism that categorizes the information
based on parameters.
o The publish subscribe and content distribution overlap each other.
o Multimedia data introduces special issue because of its large size.
Distributed agents

o Agents are software processes or sometimes robots that move around the
system to do specific tasks for which they are programmed.

o Agents collect and process information and can exchange such
informationwith other agents.

o Challenges in distributed agent systems include coordination mechanisms
among the agents, controlling the mobility of the agents, their software design
and interfaces.

Distributed data mining

o Data mining algorithms process large amount of data to detect patterns and
trends in the data, to mine or extract useful information.

o The mining can be done by applying database and artificial intelligence
techniques to a data repository.
Grid computing
e Grid computing is deployed to manage resources. For instance, idle CPU
cycles of machines connected to the network will be available to others.
e The challenges includes: scheduling jobs, framework for implementing quality
of service, real-time guarantees, security.
Security in distributed systems
The challenges of security in a distributed setting include: confidentiality,

authentication and availability. This can be addressed using efficient and scalable solutions.

1.8 AMODEL OF DISTRIBUTED COMPUTATIONS: DISTRIBUTED PROGRAM

A distributed program is composed of a set of asynchronous processes that
communicate by message passing over the communication network. Each process
may run on different processor.

The processes do not share a global memory and communicate solely by passing
messages. These processes do not share a global clock that is instantaneously
accessible to these processes.

Process execution and message transfer are asynchronous — a process may execute an
action spontaneously and a process sending a message does not wait for the delivery
of the message to be complete.

The global state of a distributed computation is composed of the states of the
processes and the communication channels. The state of a process is characterized by
the state of its local memory and depends upon the context.

The state of a channel is characterized by the set of messages in transit in the channel.




A MODEL OF DISTRIBUTED EXECUTIONS

e The execution of a process consists of a sequential execution of its actions.

e The actions are atomic and the actions of a process are modeled as three types of
events: internal events, message send events, and message receive events.

e An internal event changes the state of the process at which it occurs.

e A send event changes the state of the process that sends the message and the state of
the channel on which the message is sent.

e The execution of process pi produces a sequence of events el, €2, €3, ..., and it is
denoted by Hi: Hi =(hi—i). Here hjare states produced by pi and —are the casual
dependencies among events pi.

o —msgindicates the dependency that exists due to message passing between two events.

send(m) — _ rec(m)

msg

e e e

Y

Ps .

e; e
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Fig Space time distribution of distributed systems

e An internal event changes the state of the process at which it occurs. A send event
changes the state of the process that sends the message and the state of the channel
onwhich the message is sent.

e A receive event changes the state of the process that receives the message and the
stateof the channel on which the message is received.

Casual Precedence Relations

Causal message ordering is a partial ordering of messages in a distributed computing
environment. It is the delivery of messages to a process in the order in which they were
transmitted to that process.

It places a restriction on communication between processes by requiring that if the
transmission ofmessage mj to process pk necessarily preceded the transmission of message
mj to the same process, then the delivery of these messages to that process must be ordered
such that mi is delivered before mj.

Happen Before Relation

The partial ordering obtained by generalizing the relationship between two process is called
as happened-before relation or causal ordering or potential causal ordering. This term
was coined by Lamport. Happens-before defines a partial order of events in a distributed
system. Some events can’t be placed in the order. If say A —B if A happens before B. ACB
is defined using the following rules:




v Local ordering:A and B occur on same process and A occurs before B.

v Messages: send(m) — receive(m) for any message m

v Transitivity: e > e’ ife >e’ande’ — ¢”’

o Ordering can be based on two situations:

1. If two events occur in same process then they occurred in the order observed.

2. During message passing, the event of sending message occurred before the event of
receiving it.

Lamports ordering is happen before relation denoted by —
e a—Db, ifaand b are events in the same process and a occurred before b.

e a—b, if a is the vent of sending a message m in a process and b is the event of the
same message m being received by another process.
e If a—b and b—c, then a—c. Lamports law follow transitivity property.

When all the above conditions are satisfied, then it can be concluded that a—b is casually
related. Consider two events ¢ and d; c—d and d—c is false (i.e) they are not casually
related, then ¢ and d are said to be concurrent events denoted as c||d.

Fig Communication between processes

Fig 1.22 shows the communication of messages m1 and m2 between three processes pl, p2
and p3. a, b, ¢, d, e and f are events. It can be inferred from the diagram that, a—b; c—d;
e—f; b->c; d—f; a—d; a—f; b—d; b—f. Also alle and c|le.

Logical vs physical concurrency

Physical as well as logical concurrency is two events that creates confusion in
distributed systems.
Physical concurrency: Several program units from the same program that execute
simultaneously.
Logical concurrency: Multiple processors providing actual concurrency. The actual
execution of programs is taking place in interleaved fashion on a single processor.

Differences between logical and physical concurrency

Logical concurrency

Physical concurrency

Several units of the same program execute
simultaneously on same processor, giving an
illusion to the programmer that they are
executing on multiple processors.

Several program units of the same program
execute at the same time on different
processors.

They are implemented through interleaving.

They are implemented as uni-processor with
I/0
channels, multiple CPUs, network of uni or
multi CPU machines.




MODELS OF COMMUNICATION NETWORK
The three main types of communication models in distributed systems are:
FIFO (first-in, first-out): each channel acts as a FIFO message queue.
Non-FIFO (N-FIFO): a channel acts like a set in which a sender process adds messages and
receiver removes messages in random order.
Causal Ordering (CO): It follows Lamport’s law.
0 The relation between the three models is given by CO [ FIFO [ N-FIFO.

A system that supports the causal ordering model satisfies the following property:
CO: For any two messages m;; and my;, if send(m;;) — send(m,;),

then rec(m,;) — rec(my;).

GLOBAL STATE

Distributed Snapshot represents a state in which the distributed system might have been in. A snapshot
of the system s a single configuration of the system.

* The global state of a distributed system is a collection of the local states of its components, namely,
the processes

and the communication channels. ¢ The state of a process at any time is defined by the contents of
processor registers, stacks, local memory, etc. and depends on the local context of the distributed
application.

* The state of a channel is given by the set of messages in transit in the channel.

The state of a channel is difficult to state formally because a channel is a distributed entity
xy

and its state depends upon the states of the processes it connects. Let™ &
denote the state of a channel Cij defined as follows:
3"(';"" ={m;;| send(m )< LS; N\ rec(m;) £ LS;}.

For a successful Global State, all states must beconsistent:
e [f we have recorded that a process P has received a message from a process Q, then
we should have also recorded that process Q had actually send that message.
e Otherwise, a snapshot will contain the recording of messages that have been received
but never sent.
e The reverse condition (Q has sent a message that P has not received) is allowed.

Consistent states: The states should not violate causality. Such states are called consistent
global states and are meaningful global states.
Inconsistent global states: They are not meaningful in the sense that a distributed system

Physical
time

Inconsistent cut I
Consistent cut

can never be in an inconsistent state.




UNIT Il
LOGICAL TIME & GLOBAL STATE

Logical clocks are based on capturing chronological and causal relationships of processes and
ordering events based on these relationships.

Three types of logical clock are maintained in distributed systems:
e Scalar clock
e Vector clock
e Matrix clock

In a system of logical clocks, every process has a logical clock that is advanced using a set
of rules. Every event is assigned a timestamp and the causality relation between events can
be generally inferred from their timestamps.

The timestamps assigned to events obey the fundamental monotonicity property; that is, if
an event a causally affects an event b, then the timestamp of a is smaller than the timestamp
of b.

A Framework for a system of logical clocks

A system of logical clocks consists of a time domain T and a logical clock C. Elements of T form a
partially ordered set over a relation <. This relation is usually called the happened before or
causal precedence.

The logical clock C is a function that maps an event e in a distributed system to an element
in the time domain T denoted as C(e).
C:Hw Tsych that
for any two events ej and ej,. & — ¢; < C(e;) < Cle;)
This monotonicity property is called the clock consistency condition. When T and C

satisfythe following condition,
e — ¢; < C(e;) < Cle;)

Then the system of clocks is strongly consistent.

Implementing logical clocks
The two major issues in implanting logical clocks are:
Data structures: representation of each process

Protocols: rules for updating the data structures to ensure consistent conditions.

Data structures:
Each process pi maintains data structures with the given capabilities:

« A local logical clock (lci), that helps process pi measure its own progress.
* A logical global clock (gci), that is a representation of process pi’s local view of the
logicalglobal time. It allows this process to assign consistent timestamps to its local events.




Protocol:

The protocol ensures that a process’s logical clock, and thus its view of the global time,
ismanaged consistently with the following rules:

Rule 1: Decides the updates of the logical clock by a process. It controls send, receive and
other operations.

Rule 2: Decides how a process updates its global logical clock to update its view of the
global time and global progress. It dictates what information about the logical time is
piggybacked in a message and how this information is used by the receiving process to
update its view of the global time.

2.1.1 SCALAR TIME

Scalar time is designed by Lamport to synchronize all the events in distributed

systems. A Lamport logical clock is an incrementing counter maintained in each process.
When a process receives a message, it resynchronizes its logical clock with that sender
maintaining causal relationship.

The Lamport’s algorithm is governed using the following rules:

The algorithm of Lamport Timestamps can be captured in a few rules:

All the process counters start with value 0.

A process increments its counter for each event (internal event, message sending,
message receiving) in that process.

When a process sends a message, it includes its (incremented) counter value with the
message.

On receiving a message, the counter of the recipient is updated to the greater of its
current counter and the timestamp in the received message, and then incremented by
one.

If Ci is the local clock for process Pi then,
if aand b are two successive events in Pj, then Ci(b) = Ci(a) + d1, where d1 >0

if ais the sending of message m by Pj, then m is assigned timestamp tm = Ci(a)
if b is the receipt of m by Pj, then Cj(b) = max{Cj(b), tm + d2}, where d2 >0

Rules of Lamport’s clock

Rule 1: Ci(b) = Ci(a) + d1, where d1 >0

Rule 2: The following actions are implemented when p; receives a message m with timestamp Cp,:
a) Ci=max(Ci, Cn)

b) Execute Rule 1

| c) deliver the message

10

Fig 1.20: Evolution of scalar time




Basic properties of scalar time:
1. Consistency property: Scalar clock always satisfies monotonicity. A monotonic clock
only increments its timestamp and never jump. Hence it is consistent.

Cle;) < C(ej].
2. Total Reordering: Scalar clocks order the events in distributed systems. But all the
events do not follow a common identical timestamp. Hence a tie breaking mechanism is
essential toorder the events. The tie breaking is done through:
o Linearly order process identifiers.
o Process with low identifier value will be given higher priority.

The term (t, i) indicates timestamp of an event, where t is its time of occurrence and i is the
identity of the process where it occurred.

The total order relation (‘( ) over two events x and y with timestamp (h, i) and (k, J) is given by:
x < y& (h<kor(h=kandi<)))

A total order is generally used to ensure liveness properties in distributed algorithms.

3. Event Counting

If event e has a timestamp h, then h—1 represents the minimum logical duration,
counted in units of events, required before producing the event e. This is called height of the
event e. h-1 events have been produced sequentially before the event e regardless of the
processes that produced these events.

4. No strong consistency

The scalar clocks are not strongly consistent is that the logical local clock and logical
global clock of a process are squashed into one, resulting in the loss causal dependency
information among events at different processes.

2.1.2 VECTOR TIME
The ordering from Lamport's clocks is not enough to guarantee that if two events
precede one another in the ordering relation they are also causally related. Vector Clocks use
a vector counter instead of an integer counter. The vector clock of a system with N processes
is a vector of N counters, one counter per process. Vector counters have to follow the
following update rules:
e |Initially, all counters are zero.

e Each time a process experiences an event, it increments its own counter in the vector
by one.




e Each time a process sends a message, it includes a copy of its own (incremented)
vector in the message.

e FEach time a process receives a message, it increments its own counter in the vector by
one and updates each element in its vector by taking the maximum of the value in its
own vector counter and the value in the vector in the received message.

The time domain is represented by a set of n-dimensional non-negative integer vectors in vector
time.

Rules of Vector Time

Rule 1: Before executing an event, process pi updates its local logical time
as follows:
vt,[i] == vt,[i] + d (d = 0)
Rule 2: Each message m is piggybacked with the vector clock vt of the sender

process at sending time. On the receipt of such a message (m,vt), process
pi executes the following sequence of actions:

1. update its global logical time

1 <k <n : vlk] = max(vt[k], vi[k])
2. execute R1
3. deliver the message m

Py L
2
. M
(
i 0
0
Pa @
0
0
1
P3 @

Fig 1.21: Evolution of vector scale
Basic properties of vector time
1. Isomorphism:
e “—"induces a partial order on the set of events that are produced by a distributed
execution.

e |f events x and y are timestamped as vh and vk then,

x— Yy < vh<vk
[ x|y < vh| vk.

e If the process at which an event occurred is known, the test to compare two

timestamps can be simplified as:
x— y < vh|i] < vkli]

x|y < vh|i] > vk[i] Avh[j] < vk[]].
2. Strong consistency

The system of vector clocks is strongly consistent; thus, by examining the vector timestamp
of two events, we can determine if the events are causally related.




3. Event counting
If an event e has timestamp vh[i], vh[j] denotes the number of events executed by process
pjthat causally precede e.

2.2 PHYSICAL CLOCK SYNCHRONIZATION: NEWTWORK TIME PROTOCOL
(NTP)

Centralized systems do not need clock synchronization, as they work under a common
clock. But the distributed systems do not follow common clock: each system functions based
on its own internal clock and its own notion of time. The time in distributed systems is
measured in the following contexts:

e The time of the day at which an event happened on a specific machine in the network.

e The time interval between two events that happened on different machines in the
network.
e The relative ordering of events that happened on different machines in the network.

Clock synchronization is the process of ensuring that physically distributed processors have a
common notion of time.

Due to different clocks rates, the clocks at various sites may diverge with time, and
periodically a clock synchronization must be performed to correct this clock skew in
distributed systems. Clocks are synchronized to an accurate real-time standard like UTC
(Universal Coordinated Time). Clocks that must not only be synchronized with each other
but also have to adhere to physical time are termed physical clocks. This degree of
synchronization additionally enables to coordinate and schedule actions between multiple
computers connected to a commaon network.

Basic terminologies:
If Ca and Ch are two different clocks, then:

o Time: The time of a clock in @ machine p is given by the function Cp(t),where Cp(t)=
tfor a perfect clock.

Frequency: Frequency is the rate at which a clock progresses. The frequency at time t
of clock Ca is Ca’(t).

Offset: Clock offset is the difference between the time reported by a clock and the
real time. The offset of the clock Ca is given by Ca(t)— t. The offset of clock C a
relative toCp at time t > 0 is given by Ca(t)- Ch(t)

Skew: The skew of a clock is the difference in the frequencies of the clock and

theperfect clock. The skew of a clock Ca relative to clock Cp at timet is Ca’(t)-

Cb ().

Drift (rate): The drift of clock Ca the second derivative of the clockvalue with
respectto time. The drift is calculated as:

C(1) — Cy (D).

i




Clocking Inaccuracies
Physical clocks are synchronized to an accurate real-time standard like UTC

(Universal Coordinated Time). Due to the clock inaccuracy discussed above, a timer (clock)
is said to be working within its specification if:

< 9C L
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1. Offset delay estimation
A time service for the Internet - synchronizes clients to UTC Reliability from

redundant paths, scalable, authenticates time sources Architecture. The design of NTP
involves a hierarchical tree of time servers with primary server at the root synchronizes with
the UTC. The next level contains secondary servers, which act as a backup to the primary
server. At the lowest level is the synchronization subnet which has the clients.

2. Clock offset and delay estimation
A source node cannot accurately estimate the local time on the target node due to

varying message or network delays between the nodes. This protocol employs a very
common practice of performing several trials and chooses the trial with the minimum

Fast clock
dC/dr> 1 .
Perfect clock
dC/dr=1
©
é Slow clock
_; dCldr<1
S
UTC, ¢
delay.
Fig : Behavior of clocks
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Fig a) Offset and delay estimation Fig b) Offset and delay estimation
between processes from same server between processes from different servers

Let T1, T2, T3, T4 be the values of the four most recent timestamps. The clocks A and B
arestable and running at the same speed. Let a =T1 — T3 and b = T2 — T4. If the network
delay difference from A to B and from B to A, called differential delay, is




small, the clock offset and roundtrip delay of B relative to A at time T4 are
approximatelygiven by the following:
a-+b
0 = , o=a-—b

2

Each NTP message includes the latest three timestamps T1, T2, andT3, while
T4 isdetermined upon arrival.

2.3 MESSAGE ORDERING AND GROUP COMMUNICATION
As the distributed systems are a network of systems at various physical locations, the

coordination between them should always be preserved. The message ordering means the
order of delivering the messages to the intended recipients. The common message order
schemes are First in First out (FIFO), non FIFO, causal order and synchronous order. In case
of group communication with multicasting, the causal and total ordering scheme is followed.
It is also essential to define the behaviour of the system in case of failures.  The following
are the notations that are widely used in this chapter:

e Distributed systems are denoted by a graph (N, L).

e The set of events are represented by event set {E,= }

e Message is denoted as m': send and receive events as s' and r' respectively.

e Send (M) and receive (M) indicates the message M send and received.

e allb denotes a and b occurs at the same process

e The send receive pairs L={(s, r) LJEi x Ejcorresponds to r}

2.3.1 MESSAGE ORDERING PARADIGMS
The message orderings are

(i) non-FIFO
(i) FIFO
(i) causal order
(iv) synchronous order
There is always a trade-off between concurrency and ease of use and implementation.

Asynchronous Executions

An asynchronous execution (or A-execution) is an execution (E, <) for which the causality relation
is a partial order.

e There cannot be any causal relationship between events in asynchronous execution.

e The messages can be delivered in any order even in non FIFO.

e Though there is a physical link that delivers the messages sent on it in FIFO order due
to the physical properties of the medium, a  may be formed as a composite of
physical links and multiple paths may exist between the two end points of the logical
link.
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FIFO executions

A FIFO execution is an A-execution in which, for all
(s,r)and (s, r)e T, (s~s'and r~r and s <s5') =— r<r.

e The logical link is non-FIFO.

e A FIFO logical channel can be created over a non-FIFO channel by using a
separate numbering scheme to sequence the messages on each logical channel.

e The sender assigns and appends a <sequence_num, connection_id> tuple to each
message.

e The receiver uses a buffer to order the incoming messages as per the sender’s
sequence numbers, and accepts only the “next” message in sequence.

Causally Ordered (CO) executions

CO execution is an A-execution in which, for all,
(s,r)and (5. r)eT.(r~rands<s)=—r=<r

r3 !-]
m3‘
1
%) m
53‘
)

52 sl

Fig: CO Execution

e Two send events s and s’ are related by causality ordering (not physical time
ordering), then a causally ordered execution requires that their corresponding receive
events rand r’ occur in the same order at all common destinations.

Applications of causal order:

Applications that requires update to shared data to implement distributed shared
memory, and fair resource allocation in distributed mutual exclusion.

Causal Order(CO) for Implementations:

If send(m*) < send(m?) then for each common destination d of messages m* and m?,
deliverd(m?) <deliverd(m? must be satisfied.




Other properties of causal ordering
1. Message Order (MO): A MO execution is an A-execution in which, for all
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Fig: Not a CO execution

Empty Interval Execution: An execution (E <) is an empty-interval (El)execution if
for each pair of events (s, r) € T, the open interval set
{xeE|s<x=<r}
in the partial order is empty.

An execution (E, <) is CO if and only if for each pair of events (s, r) € T and eachevent e € E,

e weak common past:

e<r==-(s<e)
e weak common future:

. §<e=— —(e=<r).
Synchronous Execution

e When all the communication between pairs of processes uses synchronous send and
receives primitives, the resulting order is the synchronous order.

e The synchronous communication always involves a handshake between the receiver
and the sender, the handshake events may appear to be occurring instantaneously and
atomically.

Causality in a synchronous execution
The synchronous causality relation << on E is the smallest transitive relation that satisfies

following: S1: If x occurs before y at the same process, then x<<'y.

S2: If sre T, then for all x € E,[(X s &= Xx<<r) and (s<<x&= r <<x)].

S3: If X <<y and y<<z, then x<<z

Synchronous Execution:

A synchronous execution (or S-execution) is an execution (E, << )for which the causality relation<< is

partial order

the
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Timestamping a synchronous execution

An execution( E <)is synchronous if and only if there exists a mapping from E to T (scalar timestamps)
such that

« for any message M, T(s(M))=T(r(M);

« for each process Pi, if ei < ei® then T(ei)< T(ei? .

2.4 ASYNCHRONOUS EXECUTION WITH SYNCHRONOUS COMMUNICATION
When all the communication between pairs of processes is by using synchronous send
and receive primitives, the resulting order is synchronous order. If a program is written for an
asynchronous system, say a FIFO system, will it still execute correctly if the communication
is done by synchronous primitives. There is a possibility that the program may deadlock,

Process i Process j
Send(j) Send(i)
Receive()) Receive(i)

Fig) A communication program for an asynchronous system deadlock when using

synchronous primitives
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Realizable Synchronous Communication (RSC)

A-execution can be realized under synchronous communication is called a realizable with
synchronous communication (RSC).

An execution can be modeled to give a total order that extends the partial order (E, <).

In an A-execution, the messages can be made to appear instantaneous if there exist a linear extension of
the execution, such that each send event is immediately followed by its corresponding receive event in
this linear extension.

Non-separated linear extension is an extension of (E, <) is a linear extension of (E, <) such that for
each pair (s, r) € T, the interval { X E s< x <r} isempty.

A-execution (E, <) is an RSC execution if and only if there exists a non-separated linear extension of
the partial order (E, <).

In the non-separated linear extension, if the adjacent send event and its corresponding receive event are
viewed atomically, then that pair of events shares a common past and a common future with each other.

Crown
Let E be an execution. A crown of size k in E is a sequence <(si, ri), i €{0,..., k-1}> of pairs of
corresponding send and receive events such that: sO < rl, s1 < r2, sk—2 < rk—1, sk—1 < r0.

The crown is <(s1, rl) (s2, r2)> as we have s1 < r2 and s2 < rl. Cyclic dependencies may exist in a
crown. The crown criterion states that an A-computation is RSC, i.e., it can be realized on a system
with synchronous communication, if and only if it contains no crown.

Timestamp criterion for RSC execution

An execution (E, <) is RSC if and only if there exists a mapping from E to T (scalar timestamps)
such that

for any message M, T(s(M)) = T(r(M)):
foreach (a. ) in (E>XXK 7, a <b— T(a) < TD)

Synchronous programs on asynchronous systems
— A (valid) S-execution can be trivially realized on an asynchronous system by
scheduling the messages in the order in which they appear in the S-execution.
— The partial order of the S-execution remains unchanged but the communication
occurs on an asynchronous system that uses asynchronous communication primitives.
— Once a message send event is scheduled, the middleware layer waits for
acknowledgment; after the ack is received, the synchronous send primitive completes.

2.5 SYNCHRONOUS PROGRAM ORDER ON AN ASYNCHRONOUS SYSTEM

Non deterministic programs
The partial ordering of messages in the distributed systems makes the repeated runs of
the same program will produce the same partial order, thus preserving deterministic nature.
But sometimes the distributed systems exhibit non determinism:
e A receive call can receive a message from any sender who has sent a message, if the
expected sender is not specified.

e Multiple send and receive calls which are enabled at a process can be executed in an
interchangeable order.

e |Ifisendstoj, and j sends to i concurrently using blocking synchronous calls, there




results a deadlock.

e There is no semantic dependency between the send and the immediately following
receive at each of the processes. If the receive call at one of the processes can be
scheduled before the send call, then there is no deadlock.

Rendezvous
Rendezvous systems are a form of synchronous communication among an arbitrary
number of asynchronous processes. All the processes involved meet with each other, i.e.,
communicate synchronously with each other at one time. Two types of rendezvous systems
are possible:
e Binary rendezvous: When two processes agree to synchronize.

e Multi-way rendezvous: When more than two processes agree to synchronize.

Features of binary rendezvous:
e For the receive command, the sender must be specified. However, multiple recieve
commands can exist. A type check on the data is implicitly performed.

e Send and received commands may be individually disabled or enabled. A command is
disabled if it is guarded and the guard evaluates to false. The guard would likely
contain an expression on some local variables.

e Synchronous communication is implemented by scheduling messages under the
covers using asynchronous communication.

e Scheduling involves pairing of matching send and receives commands that are both
enabled. The communication events for the control messages under the covers do not
alter the partial order of the execution.

2.3.2 Binary rendezvous algorithm
If multiple interactions are enabled, a process chooses one of them and tries to
synchronize with the partner process. The problem reduces to one of scheduling messages
satisfying the following constraints:
e Schedule on-line, atomically, and in a distributed manner.
e Schedule in a deadlock-free manner (i.e., crown-free).

e Schedule to satisfy the progress property in addition to the safety property.

Steps in Bagrodia algorithm
1. Receive commands are forever enabled from all processes.

2. A send command, once enabled, remains enabled until it completes, i.e., it is not
possible that a send command gets before the send is executed.

3. To prevent deadlock, process identifiers are used to introduce asymmetry to break
potential crowns that arise.

4. Each process attempts to schedule only one send event at any time.




The message (M) types used are: M, ack(M), request(M), and permission(M). Execution
events in the synchronous execution are only the send of the message M and receive of the
message M. The send and receive events for the other message types — ack(M), request(M),
and permission(M) which are control messages. The messages request(M), ack(M), and
permission(M) use M’s unique tag; the message M is not included in these messages.

(message types)
M, ack(M), request(M), permission(M)
(1) Pi wants to execute SEND(M) to a lower priority process Pj:

Pi executes send(M) and blocks until it receives ack(M) from Pj . The send event SEND(M)
nowcompletes.

Any M message (from a higher priority processes) and request(M) request for
synchronization (from a lower priority processes) received during the blocking period are
queued.

(2)Pi wants to execute SEND(M) to a higher priority
process Pj: (2a) Pi seeks permission from Pj by executing
send(request(M)).

.(2b) While Pj is waiting for permission, it remains unblocked.

(i) If a message M’ arrives from a higher priority process Pk, Pi accepts M by scheduling a
RECEIVE(M)) event and then executes send(ack(M)) to Pk.

(i) If a request(M) arrives from a lower priority process Pk, Pi executes

send(permission(M’)) to Pk and blocks waiting for the messageM’. WhenM’ arrives, the
RECEIVE(M”) event is executed.

(2c) When the permission(M) arrives, Pi knows partner Pj is synchronized and Pi executes
send(M). The SEND(M) now completes.

(3) request(M) arrival at Pi from a lower priority process Pj:

At the time a request(M) is processed by Pi, process Pi executes send(permission(M)) to Pj

and blocks waiting for the message M. When M arrives, the RECEIVE(M) event is executed
and the process unblocks.




(4) Message M arrival at Pi from a higher priority process Pj:

At the time a message M is processed by Pi, process Pi executes RECEIVE(M) (which is
assumed to be always enabled) and then send(ack(M)) to Pj .

(5) Processing when Pj is unblocked:

When Pj is unblocked, it dequeues the next (if any) message from the queue and processes it
as a message arrival (as per rules 3 or 4).

Fig 2.5: Bagrodia Algorithm

2.6 GROUP COMMUNICATION
Group communication is done by broadcasting of messages. A message broadcast is

the sending of a message to all members in the distributed system. The communication may
be

e Multicast: A message is sent to a certain subset or a group.
e Unicasting: A point-to-point message communication.

The network layer protocol cannot provide the following functionalities:
= Application-specific ordering semantics on the order of delivery of messages.

= Adapting groups to dynamically changing membership.

= Sending multicasts to an arbitrary set of processes at each send event.
= Providing various fault-tolerance semantics.

= The multicast algorithms can be open or closed group.

2.7 CAUSAL ORDER (CO)

In the context of group communication, there are two modes of communication:
causal order and total order. Given a system with FIFO channels, causal order needs to be
explicitly enforced by a protocol. The following two criteria must be met by a causal
ordering protocol:

e Safety: In order to prevent causal order from being violated, a message M that
arrives at a process may need to be buffered until all system wide messages sent in the
causal past of the send (M) event to that same destination have already arrived. The
arrival of a message is transparent to the application process. The delivery event
corresponds to the receive event in the execution model.

e Liveness: A message that arrives at a process must eventually be delivered to the
process.

The Raynal-Schiper—Toueg algorithm

e FEach message M should carry a log of all other messages sent causally before M’s
send event, and sent to the same destination dest(M).

e The Raynal-Schiper-Toueg algorithm canonical algorithm is a representative of
several algorithms that reduces the size of the local space and message space
overhead by various techniques.

e This log can then be examined to ensure whether it is safe to deliver a message.




e All algorithms aim to reduce this log overhead, and the space and time overhead of
maintaining the log information at the processes.
e To distribute this log information, broadcast and multicast communication is used.
e The hardware-assisted or network layer protocol assisted multicast cannot efficiently
provide features:
> Application-specific ordering semantics on the order of delivery of messages.
» Adapting groups to dynamically changing membership.
» Sending multicasts to an arbitrary set of processes at each send event.
» Providing various fault-tolerance semantics

The Kshem Kalyani — Singhal Optimal Algorithm

An optimal CO algorithm stores in local message logs and propagates on messages,
information of the form d is a destination of M about a message M sent in the causal past, as
long as and only as long as:

Propagation Constraint I: it is not known that the message M is delivered to d.

Propagation Constraint I1: it is not known that a message has been sent to d in the causal
future of Send(M), and hence it is not guaranteed using a reasoning based on transitivity that
the message M will be delivered to d in CO.

= Message senttod

Border of causal future of corresponding event

O Event at which message is sent to , and there is no such
event on any causal path between event e and this event

<> Info "d is a dest. of M" must exist for correctness

>< Info "d is a dest. of M" must not exist for optimality

Fig : Conditions for causal ordering




The Propagation Constraints also imply that if either (1) or (I1) is false, the information
“d € M.Dests” must not be stored or propagated, even to remember that (I) or (Il) has been
falsified:
= not in the causal future of Deliverd(M1, a)

= not in the causal future of e k, c where d eMk,cDests and there is no
other message sent causally between Mija and Mk, c to the same
destination d.

Information about messages:

(i) not known to be delivered

(i) not guaranteed to be delivered in CO, is explicitly tracked by the algorithm using (source,
timestamp, destination) information.

Information about messages already delivered and messages guaranteed to be delivered in
CO is implicitly tracked without storing or propagating it, and is derived from the explicit
information. The algorithm for the send and receive operations is given in Fig. 2.7 &) and b).
Procedure SND is executed atomically. Procedure RCV is executed atomically except for a
possible interruption in line 2a where a non-blocking wait is required to meet the Delivery
Condition.

(1) SND: j sends a message M to Dests:

(1a) clock; «— clock;+1:
(Ib) for all d € M.Dests do:
Oy <— LOG;; /I Oy denotes 0_,,1_“,"“}4
for all 0 € O,,, modify o.Dests as follows:
if d ¢ o.Dests then o.Dests <— (0.Dests\ M.Dests);
if d € o.Dests then o.Dests «<— (o.Dests\ M.Dests) |\ {d};
/' Do not propagate information about indirect dependencies that are
/I guaranteed to be transitively satisfied when dependencies of M are satisfied.
for all o, € Oy do
if o, ,.Dests =0 )\ (30, , € Oy | t< 1) then Oy «— Oy \{o,,}:
/I do not propagate older entries for which Dests field is ¢
send (j, clock ;. M, Dests, Oy) to d;
(Ic) forallle LOG; do [.Dests <— [.Dests\ Dests:
/' Do not store information about indirect dependencies that are guaranteed
// to be transitively satisfied when dependencies of M are satisfied.
Execute PURGE_NULL_ENTRIES(L()GI); /l purge l € L()Gl if l.Dests =0
(1d) LOG; «— LOG,; Ul(j. clock;, Dests)}.




Fig 2.7 a) Send algorithm by Kshemkalyani-Singhal to optimally implement causal

ordering
(2) RCV: j receives a message (k, 1., M, Dests, O,,) from k:

(2a) // Delivery Condition: ensure that messages sent causally before M are delivered.
forallo,, € O, do
if j € 0,,, .Dests wait until 7, < SR;[m];
(2b) Deliver M: SR [k] «— 1,
(2¢) Oy «— {(k.t,, Dests)}) | Oy
for all 0, , € Oy doo,, .Dests <—o,, .Dests\{j}:
// delete the now redundant dependency of message represented by o,
(2d) // Merge O, and LOG; by eliminating all redundant entries.
/I Implicitly track “already delivered” & “guaranteed to be delivered in CO”
/I messages.
for all 0, , € Oy and [, € LOG; such that s = m do
ift<1 Al & LOG; then mark o, ,:
/I 1, , had been deleted or never inserted, as [_,. Dests = in the causal past
ift'<t A\ o, &0, then mark [_:
Il 0,, + & O,y because [ , had become # at another process in the causal past
Delete all marked elements in O,, and LOG; :
// delete entries about redundant information
forall/ , € LOG; and 0,,, € Oy.such that s=m A "=t do
I, y.Dests «—1_,.Dests(o,, ,.Dests;
/I delete destinations for which Delivery
// Condition is satisfied or guaranteed to be satisfied as per 0, ,
Delete o, , from Oy, // information has been incorporated in [ .
LOG; «— LOG;|JOy: /I merge non-redundant information of O, into LOG;
(2e) PURGE_NULL_EN'I'RIES(L()Gj)‘ /[ Purge older entries [ for which [.Dests =}

sent to j

m iy,

m.t

PURGE_NULL_ENTRIES(Log;): // Purge older entries [ for which I.Dests = is
// implicitly inferred

Fig b) Receive algorithm by Kshemkalyani-Singhal to optimally implement causal
ordering

The data structures maintained are sorted row—major and then column-major:

1. Explicit tracking:

= Tracking of (source, timestamp, destination) information for messages (i) not known to be
delivered and (i) not guaranteed to be delivered in CO, is done explicitly using the
I.Dests field of entries in local logs at nodes and o0.Dests field of entries in messages.

= Sets lj,a Dests and 0j,a. Dests contain explicit information of destinations to which Mij ais
not guaranteed to be delivered in CO and is not known to be delivered.

= The information about d M a .Dests is propagated up to the earliest events on all causal
paths from (i, a) at which it is known that Mij a is delivered to d or is guaranteed to be
delivered to d in CO.

2. Implicit tracking:
= Tracking of messages that are either (i) already delivered, or (ii) guaranteed to be
delivered in CO, is performed implicitly.




= The information about messages (i) already delivered or (ii) guaranteed to be
delivered in CO is deleted and not propagated because it is redundant as far as
enforcing CO is concerned.

= |t is useful in determining what information that is being carried in other messages
and is being stored in logs at other nodes has become redundant and thus can be
purged.

= The semantics are implicitly stored and propagated. This information about messages
that are (i) already delivered or (ii) guaranteed to be delivered in CO is tracked
without explicitly storing it.

= The algorithm derives it from the existing explicit information about messages (i) not
known to be delivered and (ii) not guaranteed to be delivered in CO, by examining
only oj,aDests or li,aDests, which is a part of the explicit information.

P L = B Message to dest. Piggybacked
1 M, / A /M\ s Ms ;. Dests
" _ LT M, to PP {Py.Pg)
2 M 2 X 3 "4 M, ,to Py P, {P}
42/ 1 2 ;3 My, M, ,to P, {Ps}
Py Mgsto P, (P}
i M,, Mis )/ \ M, 50 Ps {Ps}
L M, sto Py

P, / ; 0
M;s, & ‘1\// ) \W_‘_; M;s;t0 Pg {P4.,Pg)
M, sto P, {Pg}

P \ :
- ]\\Z'“ Mg, / \("!4.3 \Ms.z \ Mssto Pas {
Py

-------- Causal past contains event (6,1)

Information about Py as a destination
—— — of multicast at event (5.1) propagates
as piggybacked information and in logs

Fig 2.8: [lllustration of propagation

constraintsMulticasts M5,1and M4,1
Message M5,1 sent to processes P4 and P6 contains the piggybacked information M5, 1.

Dest= {P4, P6}. Additionally, at the send event (5, 1), the information M5,1.Dests = {P4,P6}
is also inserted in the local log Log5. When M5,1 is delivered to P6, the (new) piggybacked
information P4 € M5,1 Dests is stored in Log6 as M5,1.Dests ={P4} information about P6 €
M5,1.Dests which was needed for routing, must not be stored in Log6 because of constraint
l.

In the same way when M5, 1 is delivered to process P4

at event (4, 1), only the new piggybacked information P6 € M5,1 .Dests is inserted in Log4 as
M5,1.Dests =P6which is later propagated during multicast M4,2.

Multicast M4,3

At event (4, 3), the information P6 eM5,1.Dests in Log4 is propagated on multicast M4,3only
to process P6 to ensure causal delivery using the Delivery Condition. The piggybacked
information on message M4,3sent to process P3must not contain this information because of
constraint Il. As long as any future message sent to P6 is delivered in causal order w.r.t.
M4, 3sent to P6, it will also be delivered in causal order w.r.t. M5 1. And as M5,1 is already
delivered to P4, the information M5 1Dests = @ is piggybacked on M4,3 sent to P 3.
Similarly, the information P6 € M5,1Dests must be deleted from Log4 as it will no longer be
needed, because of constraint Il. M5,1Dests = @ is stored in Log4 to remember that M5,1 has
been delivered or is guaranteed to be delivered in causal order to all its destinations.




Learning implicit information at P2 and P3
When message M4,2is received by processes P2 and P3, they insert the (new)
piggybacked information in their local logs, as information M5,1.Dests = P6. They both

continue to storethis in Log2 and Log3 and propagate this information on multicasts until
they learn at events(2, 4) and (3, 2) on receipt of messages M3,3and M4,3, respectively, that
any future message is expected to be delivered in causal order to process P6, w.r.t. M5, 1sent

toP6. Hence byconstraint Il, this information must be deleted from Log2 andLog3. The
flow of events isgiven by;

e When M4,3 with piggybacked information M5 1Dests = @ is received byP3at (3, 2),
this is inferred to be valid current implicit information about multicast M5,1because
the log Log3 already contains explicit informationP6 €M5 1 Dests about that
multicast. Therefore, the explicit information in Log3 is inferred to be old and must be
deleted to achieve optimality. M5 1Dests is set to @ in Log3.

e The logic by which P2 learns this implicit knowledge on the arrival of M3 3is
identical.

Processing at P6
When message M5, 1 is delivered to P6, only M5,1.Dests = P4 is added to Log6. Further,
P6 propagates only M5 1.Dests = P4 on message Mg,2, and this conveys the current
implicit information M5,1 has been delivered to P6 by its very absence in the explicit
information.

e When the information P6 € M5,1Dests arrives on M4,3, piggybacked as M5,1 .Dests

= P6 it is used only to ensure causal delivery of M4,3 using the Delivery
Condition,and is not inserted in Log6 (constraint I) — further, the presence of M5,1
.Dests = P4 in Log6 implies the implicit information that M5,1 has already been
delivered to P6. Also, the absence of P4 in M5,1 .Dests in the explicit
piggybacked information implies the implicit information that M5,1 has been
delivered or is guaranteed to be delivered in causal order to P4, and, therefore,
M5, 1. Dests is set to @ in Log6.

e When the information P6 € M5,1 .Dests arrives on M52 piggybacked as M5, 1. Dests
= {P4, P6} it is used only to ensure causal delivery of M4, 3 using the Delivery
Condition, and is not inserted in Log6 because Log6 contains M5,1 .Dests = @,
which gives the implicit information that M5,1 has been delivered or is
guaranteedto be delivered in causal order to both P4 and P6.

Processing at P1
e When M2 2arrives carrying piggybacked information M5 1.Dests = P6 this

(new)information is inserted in Log1.

e When Meg,2arrives with piggybacked information M5 1.Dests ={P4}, Pllearns
implicit information M5,1has been delivered to P6 by the very absence of explicit
information P6 € M5,1.Dests in the piggybacked information, and hence marks
information P6 € M5, 1Dests for deletion from Logl

e The information “P6 €M5 1. Dests piggybacked on M2, 3,which arrives at P 1, is
inferred to be outdated using the implicit knowledge derived from M5 1 Dest= @~
inLogl.




2.8 TOTAL ORDER

For each pair of processes P; and P; and for each pair of messages My and My that are delivered to
both the processes, Pi is delivered My before My if and only if P; is delivered Mybefore My,

Centralized Algorithm for total ordering

Each process sends the message it wants to broadcast to a centralized process, which
relays all the messages it receives to every other process over FIFO channels.

(1) When process P, wants to multicast a message M to group G:
(la) send M(i, ) to central coordinator.

(2) When M(i, G) arrives from P; at the central coordinator:
(2a) send M(i, G) to all members of the group G.

(3) When M(i, G) arrives at P; from the central coordinator:
(3a) deliver M(i, G) to the application.

Complexity: Each message transmission takes two message hops and exactly n messages
in a system of n processes.

Drawbacks: A centralized algorithm has a single point of failure and congestion, and is
not an elegant solution.

Three phase distributed algorithm
Three phases can be seen in both sender and receiver side.
Sender

Phase 1
e In the first phase, a process multicasts the message M with a locally unique tag and
the local timestamp to the group members.

Phase 2
e The sender process awaits a reply from all the group members who respond with a
tentative proposal for a revised timestamp for that message M.
e The await call is non-blocking.

Phase 3
e The process multicasts the final timestamp to the group.




record (_entry

M: int; /f the application message
tag: int; /[l umgque message 1dentifier
sender_id: int; I/ sender of the message
timestamp: int; I/ tentative timestamp assigned to message
deliverable: boolean; I/ whether message 1s ready for delivery

(local variables)
queue of Q_entry: temp_Q, delivery_Q
int: clock // Used as a variant of Lamport’s scalar clock
int: priority /' Used to track the highest proposed timestamp
(message types)
REVISE_TS(M, i, tag, ts)
// Phase 1 message sent by P,, with imtial imestamp fs

PROPOSED _T5(j. i, tag, ts)

// Phase 2 message sent by P;, with revised timestamp, to F;
FINAL_TS(i, tag, ts)  // Phase 3 message sent by P,, with final timestamp

(1)  When process F; wants to multicast a message M with a tag rag:
(la) clock « clock + 1;

(1b) send REVISE_TS(M., i, tag. clock) to all processes;

(lc) rtemp_ts «0;

(1d) await PROPOSED_TS(j, i, tag, ts;) from each process P;;

(le) VjeN,dotemp_ts < max(temp_ts, ts;);

(If) send FINAL_TSUi, tag, temp_ts) to all processes;

(lg) clock «=max(clock, temp_ts).

Fig) Sender side of three phase distributed algorithm

Receiver Side
Phase 1

The receiver receives the message with a tentative timestamp. It updates the variable
priority that tracks the highest proposed timestamp, then revises the proposed
timestamp to the priority, and places the message with its tag and the revised
timestamp at the tail of the queue temp_Q. In the queue, the entry is marked as
undeliverable.

Phase 2

The receiver sends the revised timestamp back to the sender. The receiver then waits
in a non-blocking manner for the final timestamp.

Phase 3

The final timestamp is received from the multi caster. The corresponding
messageentry in temp_Q is identified using the tag, and is marked as deliverable
after the revised timestamp is overwritten by the final timestamp.




e The queue is then resorted using the timestamp field of the entries as the key. As the
queue is already sorted except for the modified entry for the message under
consideration, that message entry has to be placed in its sorted position in the queue.

e If the message entry is at the head of the temp_Q, that entry, and all consecutive
subsequent entries that are also marked as deliverable, are dequeued from temp_Q,
and enqueued in deliver_Q.

Complexity
This algorithm uses three phases, and, to send a message to n — 1 processes, it uses 3(n — 1)
messages and incurs a delay of three message hops
Example
An example execution to illustrate the algorithm is given in Figure 6.14. Here, A and B
multicast to a set of destinations and C and D are the common destinations for both
multicasts. «
Figure (a) The main sequence of steps is as follows:
1. A sends a REVISE_TS(7) message, having timestamp 7. B sends a REVISE_TS(9)
message, having timestamp 9.
2. C receives A’s REVISE TS(7), enters the corresponding message in temp_Q, and marks
it as undeliverable; priority = 7. C then sends PROPOSED_TS(7) message to A
3. D receives B’s REVISE TS(9), enters the corresponding message in temp Q, and marks
it as undeliverable; priority = 9. D then sends PROPOSED_TS(9) message to B.
4. C receives B’s REVISE TS(9), enters the corresponding message in temp_Q, and marks
it as undeliverable; priority = 9. C then sends PROPOSED_TS(9) message to B.
5. D receives A’s REVISE TS(7), enters the corresponding message in temp_Q, and marks
it as undeliverable; priority = 10. D assigns a tentative timestamp value of 10, which is
greater than all of the times tamps on REVISE_TSs seen so far, and then sends
PROPOSED_TS(10) message to A.
The state of the system is as shown in the figure
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Fig) An example to illustrate the three-phase total ordering algorithm. (a) A snapshot for
PROPOSED_TS and REVISE_TS messages. The dashed lines show the further execution
after the snapshot. (b) The FINAL_TS messages in the example.




Figure (b) The continuing sequence of main steps is as follows:

6. When A receives PROPOSED_TS(7) from C and PROPOSED_TS(10) from D, it
computes the final timestamp as max710=10, and sends FINAL_TS(10) to C and D.

7. When B receives PROPOSED_TS(9) from C and PROPOSED _TS(9) from D, it
computes the final timestamp as max99=9, and sends FINAL_TS(9) to C and D.

8. C receives FINAL_TS(10) from A, updates the corresponding entry in temp_Q with the
timestamp, resorts the queue, and marks the message as deliverable. As the message is not
at the head of the queue, and some entry ahead of it is still undeliverable, the message is
not moved to delivery_Q.

9. D receives FINAL_TS(9) from B, updates the corresponding entry in temp_Q by
marking the corresponding message as deliverable, and resorts the queue. As the message
is at the head of the queue, it is moved to delivery Q. This is the system snapshot shown in
Figure (b).

The following further steps will occur:

10. When C receives FINAL_TS(9) from B, it will update the correspond ing entry in
temp_Q by marking the corresponding message as deliv erable. As the message is at the
head of the queue, it is moved to the delivery_Q, and the next message (of A), which is
also deliverable, is also moved to the delivery Q.

11. When D receives FINAL_TS(10) from A, it will update the corre sponding entry in
temp_Q by marking the corresponding message as deliverable. As the message is at the
head of the queue, it is moved to the delivery_Q

2.9 GLOBAL STATE AND SNAPSHOT RECORDING ALGORITHMS

A distributed computing system consists of processes that do not share a common
memory and communicate asynchronously with each other by message passing.

Each component of has a local state. The state of the process is the local memory and
ahistory of its activity.

The state of a channel is characterized by the set of messages sent along the channel
less the messages received along the channel. The global state of a distributed system
isa collection of the local states of its components.

If shared memory were available, an up-to-date state of the entire system would be
available to the processes sharing the memory.

The absence of shared memory necessitates ways of getting a coherent and complete
view of the system based on the local states of individual processes.

A meaningful global snapshot can be obtained if the components of the distributed
system record their local states at the same time.

This would be possible if the local clocks at processes were perfectly synchronized or
if there were a global system clock that could be instantaneously read by the
processes.

If processes read time from a single common clock, various in determinate
transmission delays during the read operation will cause the processes to identify
various physical instants as the same time.

2.9.1 System Model

e The system consists of a collection of n processes, pl, p2,....pn that are
connectedby channels.
e Let Cij denote the channel from process pi to process pj.

® Processes and channels have states associated with them.




e The state of a process at any time is defined by the contents of processor registers,
stacks, local memory, etc., and may be highly dependent on the local context of
the distributed application.

e The state of channel Cij, denoted by SCij, is given by the set of messages in transit
in the channel.

e The events that may happen are: internal event, send (send (mij)) and receive
(rec(mij)) events.

e The occurrences of events cause changes in the process state.

e Achannel is a distributed entity and its state depends on the local states of the
processes on which it is incident.

Transit: transit(LS;, LS;) = {m; |send(m,;) € LS, /\rec(m”) ¢LS;}

e The transit function records the state of the channel Cij.

e In the FIFO model, each channel acts as a first-in first-out message queue and,
thus, message ordering is preserved by a channel.

¢ In the non-FIFO model, a channel acts like a set in which the sender process
adds messages and the receiver process removes messages from it in a random
order.

2.9.2 A consistent global state
The global state of a distributed system is a collection of the local states of the
processes and the channels. The global state is given by:

GS= {UILSI" UI,J'SCIJ‘}'
The two conditions for global state are:
C1: send(m;)eLS; = m;€SC,, & rec(m;;)ELS;

C2: send(m;)¢LS; = mygSC; A rec(m;;)¢LS;.

Condition 1 preserves law of conservation of messages. Condition C2 states that in
thecollected global state, for every effect, its cause must be present.

Law of conservation of messages: Every message mjthat is recorded as sent in the local state of a
process p; must be captured in the state of the channel Cjj or in the collected local state of the
receiver process pj.

» In a consistent global state, every message that is recorded as received is also recorded
as sent. Such a global state captures the notion of causality that a message cannot be
received if it was not sent.

» Consistent global states are meaningful global states and inconsistent global states are
not meaningful in the sense that a distributed system can never be in an inconsistent
state.

2.9.3 Interpretation of cuts
e Cuts in a space-time diagram provide a powerful graphical aid in representing and
reasoning about the global states of a computation. A cut is a line joining an arbitrary
point on each process line that slices the space-time diagram into a PAST and a
FUTURE.




e A consistent global state corresponds to a cut in which every message received in the
PAST of the cut has been sent in the PAST of that cut. Sucha cut is known as a
consistent cut.

* In a consistent snapshot, all the recorded local states of processes are concurrent; that
is, the recorded local state of no process casually affects the recorded local state of
anyother process.

Issues in recording global state
The non-availability of global clock in distributed system, raises the following issues:
Issue 1:
How to distinguish between the messages to be recorded in the snapshot from those
not to be recorded?
Answer:
e Any message that is sent by a process before recording its snapshot, must
berecorded in the global snapshot (from C1).

e Any message that is sent by a process after recording its snapshot, must not
berecorded in the global snapshot (from C2).

Issue 2:
How to determine the instant when a process takes its snapshot?
The answer
Answer:
A process pj must record its snapshot before processing a message mij that was sent byprocess pi after
recording its snapshot

2.9.4 SNAPSHOT ALGORITHMS FOR FIFO CHANNELS
Each distributed application has number of processes running on different physical
servers. These processes communicate with each other through messaging channels.

A snapshot captures the local states of each process along with the state of each communication channel.

Snapshots are required to:
e Checkpointing
e Collecting garbage
e Detecting deadlocks
e Debugging

Chandy-Lamport algorithm
e The algorithm will record a global snapshot for each process channel.

e The Chandy-Lamport algorithm uses a control message, called a marker.

e After a site has recorded its snapshot, it sends a marker along all of its outgoing
channels before sending out any more messages.

e Since channels are FIFO, a marker separates the messages in the channel into those to
be included in the snapshot from those not to be recorded in the snapshot.

e This addresses issue 11. The role of markers in a FIFO system is to act as delimiters
for the messages in the channels so that the channel state recorded by the process




at the receiving end of the channel satisfies the condition C2.

Marker sending rule for process p;

(1) Process p; records its state.

(2) For each outgoing channel C on which a marker
has not been sent, p; sends a marker along C
before p, sends further messages along C.

Marker receiving rule for process p;
On receiving a marker along channel C:
if p; has not recorded its state then
Record the state of C as the empty set
Execute the “marker sending rule”
else
Record the state of C as the set of messages
received along C after p s State was recorded
and before p; received the marker along C

Fig 2.10: Chandy—Lamport algorithm

Initiating a snapshot
e Process Pj initiates the snapshot

e Pjrecords its own state and prepares a special marker message.
e Send the marker message to all other processes.
e Start recording all incoming messages from channels Cij for j not equal to i.

Propagating a snapshot
e For all processes Pjconsider a message on channel Ckj.

e |f marker message is seen for the first time:
— Pjrecords own sate and marks Ckj as empty

— Send the marker message to all other processes.
— Record all incoming messages from channels Clj for 1 not equal to j or k.

—  Else add all messages from inbound channels.

Terminating a snapshot
e All processes have received a marker.

o All process have received a marker on all the N-1 incoming channels.
e A central server can gather the partial state to build a global snapshot.

Correctness of the algorithm
e Since a process records its snapshot when it receives the first marker on any
incoming channel, no messages that follow markers on the channels incoming to it are
recorded in the process’s snapshot.
e A process stops recording the state of an incoming channel when a marker is received
on that channel.




e Due to FIFO property of channels, it follows that no message sent after the marker on that
channel is recorded in the channel state. Thus, condition C2 is satisfied.

e When a process pj receives message mij that precedes the marker on channel Cij, it acts
as follows: if process pj has not taken its snapshot yet, then it includes mij in its recorded
snapshot. Otherwise, it records mij in the state of the channel Cij. Thus, condition C1
issatisfied.

Complexity
The recording part of a single instance of the algorithm requires O(e) messages
and O(d) time, where e is the number of edges in the network and d is the diamet

thenetwork.

Properties of the recorded global state
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Fig) Timing diagram of two possible executions of the banking examples
1. (Markers shown using dashed-and-dotted arrows.) Let site S1 initiate the algorithm just after t1.

Site S1 records its local state (account A=$550) and sends a marker to site S2. The marker is
received by site S2 after t4. When site S2 receives the marker, it records its local state
(account B=$170), the state of channel C12 as $0, and sends a marker along channel C21.
When site S1 receives this marker, it records the state of channel C21 as $80. The $800 amount
in the system is conserved in the recorded global state,

A=$550 B=$170 C12 =3$0 C21 =$80

2. (Markers shown using dotted arrows.) Let site S1 initiate the algorithm just after tO and before
Sending the $50 for S2. Site S1 records its local state (account A = $600) and sends a marker to
S2. The marker is received by site S2 between t2 and t3. When site S2 receives the marker, it
records its local state (account B = $120), the state of channel C12 as $0, and sends a marker
along channel C21. When site S1 receives this marker, it records the state of channel C21 as $80.
The $800 amount in the system is conserved in the recorded global state,

A=$600 B=$120 C12 =$0 C21 =$80

The recorded global state may not correspond to any of the global states that occurred
during the computation.

This happens because a process can change its state asynchronously before the markers it
sentare received by other sites and the other sites record their states.
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But the system could have passed through the recorded global states in some equivalent
executions.

The recorded global state is a valid state in an equivalent execution and if a stable property
(i.e., a property that persists) holds in the system before the snapshot algorithm begins, it holds in
the recorded global snapshot.

Therefore, a recorded global state is useful in detecting stable properties.

UNIT I

DISTRIBUTED MUTEX AND DEADLOCK

DISTRIBUTED MUTEX & DEADLOCK

Distributed mutual exclusion algorithms: Introduction — Preliminaries — Lamport‘s algorithm
—Ricart-Agrawala algorithm — Token-Based algorithms — Suzuki Kasami‘s broadcast
algorithm; Deadlock detection in distributed systems: Introduction — System model —
Preliminaries —Models of deadlocks — Chandy-Misra-Haas Algorithms for the AND model
and OR model.

3.1 DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS
e Mutual exclusion is a concurrency control property which is introduced to prevent
race conditions.
e |t is the requirement that a process cannot access a shared resource while another
concurrent process is currently present or executing the same resource.

Mutual exclusion in a distributed system states that only one process is allowed to execute the
critical section (CS) at any given time.

e Message passing is the sole means for implementing distributed mutual exclusion.
There are three basic approaches for implementing distributed mutual exclusion:

1. Token-based approach:
— A unique token (also known as the privilege message) is shared among the sites.
— Ausite is allowed to enter its CS if it possesses the token.
— Mutual Exclusion is ensured because the token is unique.

— Eg: Suzuki-Kasami’s Broadcast Algorithm, Raymond’s Tree- Based Algorithm
etc

2. Non-token-based approach:
— Two or more successive rounds of messages are exchanged among the sites to
determine which site will enter the CS next.

— [Eg: Lamport's algorithm, Ricart—-Agrawala algorithm
Quorum-based approach:

— Each site requests permission to execute the CS from a subset of sites
(called a quorum)

— Any two subsets of sites or Quorum contains a common site.
— This comman site is responsible to make sure that only one request excutes the




CS at any time.
— Eg: Mackawa’s Algorithm

3.1.1 Preliminaries
e The system consists of N sites, S1, S2, S3, ..., SN.
e Assume that a single process is running on each site.
e The process at site Sj is denoted by pi.

e All these processes communicate asynchronously over an underlying
communication network.

e Asite can be in one of the following three states: requesting the CS, executing the CS,
or neither requesting nor executing the CS.

¢ In the requesting the CS state, the site is blocked and cannot make further requests for
the CS.

e Inthe idle state, the site is executing outside the CS.

¢ In the token-based algorithms, a site can also be in a state where a site holding the
token is executing outside the CS. Such state is referred to as the idle token state.

e Atany instant, a site may have several pending requests for CS. A site queues up
these requests and serves them one at a time.

e N denotes the number of processes or sites involved in invoking the critical section, T
denotes the average message delay, and E denotes the average critical section
execution time.

3.1.2 Requirements of mutual exclusion algorithms
e Safety property:

At any instant, only one process can execute the critical section. This is an
essential property of a mutual exclusion algorithm.

e Liveness property:
This property states the absence of deadlock and starvation. Two or more sites
should not endlessly wait for messages that will never arrive. time. This is an
important property of a mutual exclusion algorithm

e Fairness:

Fairness in the context of mutual exclusion means that each process gets a fair
chance to execute the CS. In mutual exclusion algorithms, the fairness property
generally means that the CS execution requests are executed in order of their arrival in
the system.

3.1.3 Performance metrics

» Message complexity: This is the number of messages that are required per CS
execution by a site.

» Synchronization delay: After a site leaves the CS, it is the time required and before
the next site enters the CS.

» Response time: This is the time interval a request waits for its CS execution to be
over after its request messages have been sent out. Thus, response time does not
include the time a request waits at a site before its request messages have been sent
out.




System throughput: This is the rate at which the system executes requests for the

1
System throughput = ————
ystem throughpu (SD+E)

CS. If SD is the synchronization delay and E is the average critical section execution
time.
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Figure: Response Time
Low and High Load Performance:
= The performance of mutual exclusion algorithms is classified as two special loading
conditions, viz., “low load” and “high load”.
= The load is determined by the arrival rate of CS execution requests.
= Under low load conditions, there is seldom more than one request for the critical
section present in the system simultaneously.

= Under heavy load conditions, there is always a pending request for critical section at a
site.

Best and worst case performance
= In the best case, prevailing conditions are such that a performance metric attains the

best possible value. For example, the best value of the response time is a roundtrip
message delay plus the CS execution time, 2T +E.

= For examples, the best and worst values of the response time are achieved when load
is, respectively, low and high;

= The best and the worse message traffic is generated at low and heavy load conditions,
respectively.




3.2 LAMPORT’S ALGORITHM

e Request for CS are executed in the increasing order of timestamps and time is
determined by logical clocks.

e Every site Si keeps a queue, request_queuei which contains mutual exclusion requests
ordered by their timestamps

e This algorithm requires communication channels to deliver messages the FIFO
order.Three types of messages are used Request, Reply and Release. These messages
with timestamps also updates logical clock

Requesting the critical section

o When a site S; wants to enter the CS, it broadcasts a REQUEST(rs,, i)
message to all other sites and places the request on requesi_gueue,. ((ts;,
i) denotes the timestamp of the request.)

o When a site §; receives the REQUEST(1s;, i) message from site §;, it places
site §;’s request on request_gqueune; and returns a timestamped REPLY
message o §,.

Executing the critical section

Site §; enters the CS when the following two conditions hold:

L1: §; has received a message with timestamp larger than (zs,, {) from all
other sites.
L2: §;'s request is at the top of request_guene;.

Releasing the critical section

e Site §;, upon exiting the CS, removes its request from the top of its request
queue and broadcasts a timestamped RELEASE message to all other sites.

e When a site S; receives a RELEASE message from site 5, it removes §;'s
request from its request queue.

Fig: Lamport’s distributed mutual exclusion algorithm
To enter Critical section:

7 When a site Sj wants to enter the critical section, it sends a request message
Request(tsi, 1) to all other sites and places the request on request_queuej. Here, Tsi
denotes the timestamp of Site Sij.

71 When a site Sj receives the request message REQUEST(tsi, i) from site Si, it returns a
timestamped REPLY message to site Si and places the request of site Si on
request_gqueuej

To execute the critical section:
e A site Sj can enter the critical section if it has received the message with timestamp
larger than (tsi, i) from all other sites and its own request is at the top of
request_queuei.

To release the critical section:
When a site Si exits the critical section, it rSemoves its own request from the top of its request
queue and sends a timestamped RELEASE message to all other sites. When a site Sj receives the
timestamped RELEASSE message from site Sj, it removes the request of Sia from its request
queue.
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Correctness
Theorem: Lamport’s algorithm achieves mutual exclusion.
Proof: Proof is by contradiction.

O

O

Suppose two sites Si and Sj are executing the CS concurrently. For this to happen
conditions L1 and L2 must hold at both the sites concurrently.

This implies that at some instant in time, say t, both Si and Sj have their own requests
at the top of their request queues and condition L1 holds at them. Without loss of
generality, assume that Si ’s request has smaller timestamp than the request of Sj .
From condition L1 and FIFO property of the communication channels, it is clear that
at instant t the request of Si must be present in request queuej when Sj was executing
its CS. This implies that Sj ’s own request is at the top of its own request queue
whena smaller timestamp request, Si ’s request, is present in the request queuej — a
contradiction!

Theorem: Lamport’s algorithm is fair.
Proof: The proof is by contradiction.

4

4

4

Suppose a site Si ’s request has a smaller timestamp than the request of another site Sj
and Sj is able to execute the CS before Sj .

For Sj to execute the CS, it has to satisfy the conditions L1 and L2. This implies
thatat some instant in time say t, Sj has its own request at the top of its queue and it
has also received a message with timestamp larger than the timestamp of its request
from all other sites.

But request queue at a site is ordered by timestamp, and according to our assumption
Si has lower timestamp. So Si ’s request must be placed ahead of the Sj ’s request in
the request queuej . This is a contradiction!

Message Complexity:
Lamport’s Algorithm requires invocation of 3(N — 1) messages per critical section execution.
These 3(N — 1) messages involves

(N — 1) request messages
(N — 1) reply messages
(N — 1) release messages




Drawbacks of Lamport’s Algorithm:
e Unreliable approach: failure of any one of the processes will halt the progress
ofentire system.
e High message complexity: Algorithm requires 3(N-1) messages per critical
sectioninvocation.

To enter Critical section:
e When a site Sj wants to enter the critical section, it send a timestamped

REQUESTmessage to all other sites.

e When a site Sj receives a REQUEST message from site Si, It sends a REPLY
messageto site Sj if and only if Site Sj is neither requesting nor currently executing
the critical section.

e In case Site Sj is requesting, the timestamp of Site Si‘s request is smaller than its
ownrequest.
o Otherwise the request is deferred by site Sj.

To execute the critical section:
Site Sj enters the critical section if it has received the REPLY message from all other

sites.

To release the critical section:

Upon exiting site Si sends REPLY message to all the deferred requests.

Performance:

Synchronization delay is equal to maximum message transmission time. It requires 3(N —
1) messages per CS execution. Algorithm can be optimized to 2(N — 1) messages by
omitting the REPLY message in some situations.

3.3 RICART-AGRAWALA ALGORITHM

e Ricart-Agrawala algorithm is an algorithm to for mutual exclusion in a
distributedsystem proposed by Glenn Ricart and Ashok Agrawala.

e This algorithm is an extension and optimization of Lamport’s Distributed
MutualExclusion Algorithm.

e |t follows permission based approach to ensure mutual exclusion.

e Two type of messages ( REQUEST and REPLY) are used and communication
channels are assumed to follow FIFO order.

e A site send a REQUEST message to all other site to get their permission to
entercritical section.
A site send a REPLY message to other site to give its permission to enter the




criticalsection.
e Atimestamp is given to each critical section request using Lamport’s logical clock.
e Timestamp is used to determine priority of critical section requests.
e Smaller timestamp gets high priority over larger timestamp.
e The execution of critical section request is always in the order of their timestamp.

Requesting the critical section

(a) When a site S, wants to enter the CS, it broadcasts a timestamped
REQUEST message to all other sites.

(b) When site §; receives a REQUEST message from site S, it sends a
REPLY message to site §; if site §; 1s neither requesting nor executing
the CS, or if the site §; is requesting and §;’s request’s timestamp is
smaller than site §;'s own request’s timestamp. Otherwise, the reply is
deferred and §; sets RD[i] = 1.

Executing the critical section

(c) Site §; enters the CS after it has recerved a REPLY message from every
site it sent a REQUEST message lo.

Releasing the critical secfion

(d) When site S, exits the CS, it sends all the deferred REPLY mes-
sages: Vj if RD;[j] =1, then sends a REPLY message to §; and sets
RD{;] :=0.

Fig: Ricart-Agrawala algorithm
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Theorem: Ricart-Agrawala algorithm achieves mutual exclusion.
Proof: Proof is by contradiction.

= Suppose two sites Si and Sj © are executing the CS concurrently and Si ’s request has
higher priority than the request of Sj . Clearly, Si received Sj ’s request after it has
made its own request.

* Thus, Sj can concurrently execute the CS with Si only if Si returns a REPLY to Sj (in
response to Sj ’s request) before Si exits the CS.

* However, this is impossible because Sj ’s request has lower priority.
Therefore,Ricart- Agrawala algorithm achieves mutual exclusion.

Message Complexity:
Ricart-Agrawala algorithm requires invocation of 2(N — 1) messages per critical section
execution. These 2(N — 1) messages involve:

e (N -1) request messages

e (N-1)reply messages

Drawbacks of Ricart-Agrawala algorithm:
e Unreliable approach: failure of any one of node in the system can halt the progress
of the system. In this situation, the process will starve forever. The problem of
failureof node can be solved by detecting failure after some timeout.

Performance:
Synchronization delay is equal to maximum message transmission time It requires
2(N — 1) messages per Critical section execution.

3.4 SUZUKI-KASAMI‘s BROADCAST ALGORITHM

e Suzuki-Kasami algorithm is a token-based algorithm for achieving mutual
exclusionin distributed systems.

e This is modification of Ricart-Agrawala algorithm, a permission based (Non-
token based) algorithm which uses REQUEST and REPLY messages to ensure
mutual exclusion.

e In token-based algorithms, A site is allowed to enter its critical section if it
possessesthe unique token.

e Non-token based algorithms uses timestamp to order requests for the critical
sectionwhere as sequence number is used in token based algorithms.

e Each requests for critical section contains a sequence number. This sequence
numberis used to distinguish old and current requests

To enter Critical section:

e When a site Sj wants to enter the critical section and it does not have the token then
itincrements its sequence number RNj[i] and sends a request message REQUEST((i,
sn)to all other sites in order to request the token.

e Here sn is update value of RNi[i]

e When a site Sj receives the request message REQUEST(i, sn) from site Si, it




setsRN;j[i] to maximum of RNj[i] and sni.eRN;j[i] = max(RNj[i], sn).
After updating RN;j[i], Site Sj sends the token to site Sj if it has token and RNj[i]
=LN[i]+1

Requesting the critical section:

(a) If requesting site S. does not have the token, then it increments its
sequence number, RN[i], and sends a REQUEST(i, sn) message to all
other sites. (“sn” is the updated value of RN}[i].)

(b) When asite §; receives this message, it sets RN.[i] to max(RN [il, sn).
If §; has the idle token, then it sends the token to §;if RN [i] = LN[i] +-1.

Executing the critical section:

(c) Site §; executes the CS after it has received the foken.

Releasing the critical section: Having finished the execution of the CS, site
§. takes the following actions:

(d) It sets LN[i] element of the token array equal to RN;[i].

(¢) For every site §; whose L.d. is not in the token queue, it appends it 1.d.
to the token queue if RN;{j] = LN{j] + 1.

(f) If the token queue is nonempty after the above update, §; deletes the top
site i.d. from the token queue and sends the token to the site indicated
by the 1.d.

Fig: Suzuki-Kasami‘s broadcast

algorithmTo execute the critical section:
o Site Sj executes the critical section if it has acquired the token.

To release the critical section:
After finishing the execution Site Si exits the critical section and does following:
o sets LNJi] = RNi[i] to indicate that its critical section request RNi[i] has been executed




e For every site Sj, whose ID is not prsent in the token queue Q, it appends its ID to Q
iIfRNj[j] = LN[j] + 1 to indicate that site Sj has an outstanding request.

e After above updation, if the Queue Q is non-empty, it pops a site ID from the Q
andsends the token to site indicated by popped ID.
e If the queue Q is empty, it keeps the token

Correctness

Mutual exclusion is guaranteed because there is only one token in the system and a site holds

the token during the CS execution.

Theorem: A requesting site enters the CS in finite time.

Proof: Token request messages of a site Si reach other sites in finite time.

Since one of these sites will have token in finite time, site Si ’s request will be placed in the
token queue in finite time.

Since there can be at most N — 1 requests in front of this request in the token queue, site Si
will get the token and execute the CS in finite time.

Message Complexity:
The algorithm requires 0 message invocation if the site already holds the idle token at the
time of critical section request or maximum of N message per critical section execution.
ThisN messages involves

e (N -1) request messages

e 1 reply message

Drawbacks of Suzuki—-Kasami Algorithm:
e Non-symmetric Algorithm: A site retains the token even if it does not have
requestedfor critical section.

Performance:

Synchronization delay is 0 and no message is needed if the site holds the idle token at the
time of its request. In case site does not holds the idle token, the maximum
synchronizationdelay is equal to maximum message transmission time and a maximum of
N message is required per critical section invocation.

3.5 DEADLOCK DETECTION IN DISTRIBUTED SYSTEMS
Deadlock can neither be prevented nor avoided in distributed system as the system is
so vast that it is impossible to do so. Therefore, only deadlock detection can be
implemented. The techniques of deadlock detection in the distributed system require the
following:
e Progress: The method should be able to detect all the deadlocks in the system.

e Safety: The method should not detect false of phantom deadlocks.

There are three approaches to detect deadlocks in distributed systems.
Centralized approach:
e Here there is only one responsible resource to detect deadlock.

e The advantage of this approach is that it is simple and easy to implement, while the




drawbacks include excessive workload at one node, single point failure which in
turnsmakes the system less reliable.

Distributed approach:
e In the distributed approach different nodes work together to detect deadlocks.
Nosingle point failure as workload is equally divided among all nodes.
e The speed of deadlock detection also increases.
Hierarchical approach:
e This approach is the most advantageous approach.
e It is the combination of both centralized and distributed approaches of
deadlockdetection in a distributed system.
e In this approach, some selected nodes or cluster of nodes are responsible for
deadlockdetection and these selected nodes are controlled by a single node.

System Model

A distributed program is composed of a set of n asynchronous processes p1, p2, . .
., pi, ..., pn that communicates by message passing over the communication
network.

Without loss of generality we assume that each process is running on a different
processor.

The processors do not share a common global memory and communicate solely
by passing messages over the communication network.

There is no physical global clock in the system to which processes have
instantaneous access.

The communication medium may deliver messages out of order, messages may
be lost garbled or duplicated due to timeout and retransmission, processors may
fail and communication links may go down.

We make the following assumptions:

The systems have only reusable resources.

Processes are allowed to make only exclusive access to resources.

There is only one copy of each resource.

A process can be in two states: running or blocked.

In the running state (also called active state), a process has all the needed
resources and is either executing or is ready for execution.

In the blocked state, a process is waiting to acquire some resource.

Wait for graph
This is used for deadlock deduction. A graph is drawn based on the request and

site 1 site 2
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site 3




acquirement of the resource. If the graph created has a closed loop or a cycle, then there is
adeadlock.

Preliminaries

3.6.1 Deadlock Handling Strategies
Handling of deadlock becomes highly complicated in distributed systems because
nosite has accurate knowledge of the current state of the system and because every inter-

site communication involves a finite and unpredictable delay. There are three strategies for
handling deadlocks:

e Deadlock prevention:

— This is achieved either by having a process acquire all the needed resources
simultaneously before it begins executing or by preempting a process
whichholds the needed resource.

— This approach is highly inefficient and impractical in distributed systems.

e Deadlock avoidance:

— A resource is granted to a process if the resulting global system state is

safe.This is impractical in distributed systems.
e Deadlock detection:

— This requires examination of the status of process-resource interactions

forpresence of cyclic wait.

— Deadlock detection in distributed systems seems to be the best approach
tohandle deadlocks in distributed systems.

3.6.2 Issues in deadlock Detection
Deadlock handling faces two major issues
1. Detection of existing deadlocks

Resolution of detected deadlocks

Deadlock Detection

— Detection of deadlocks involves addressing two issues namely maintenance of
theWFG and searching of the WFG for the presence of cycles or knots.

— In distributed systems, a cycle or knot may involve several sites, the search for
cyclesgreatly depends upon how the WFG of the system is represented across the
system.

— - Depending upon the way WFG information is maintained and the search for cycles is
carried out, there are centralized, distributed, and hierarchical algorithms for
deadlockdetection in distributed systems.

Correctness criteria
A deadlock detection algorithm must satisfy the following two conditions:
1. Progress-No undetected deadlocks:
The algorithm must detect all existing deadlocks in finite time. In other words, after
allwait-for dependencies for a deadlock have formed, the algorithm should not wait for any




more events to occur to detect the deadlock.
2. Safety -No false deadlocks:

The algorithm should not report deadlocks which do not exist. This is also called ascalled

phantom or false deadlocks

Resolution of a Detected Deadlock

e Deadlock resolution involves breaking existing wait-for dependencies between
theprocesses to resolve the deadlock.

e It involves rolling back one or more deadlocked processes and assigning
theirresources to blocked processes so that they can resume execution.

e The deadlock detection algorithms propagate information regarding wait-
fordependencies along the edges of the wait-for graph.

e When a wait-for dependency is broken, the corresponding information should
beimmediately cleaned from the system.

e If this information is not cleaned in a timely manner, it may result in detection
ofphantom deadlocks.

3.7 MODELS OF DEADLOCKS

The models of deadlocks are explained based on their hierarchy. The diagrams illustrate
the working of the deadlock models. Pa, Pb, Pc, Pdare passive processes that had already

acquired the resources. Peis active process that is requesting the resource.

3.7.1 Single Resource Model
e A process can have at most one outstanding request for only one unit of a resource.
e The maximum out-degree of a node in a WFG for the single resource model can be
1,the presence of a cycle in the WFG shall indicate that there is a deadlock.

P, B
E
P F.

Fig: Deadlock in single resource model

3.7.2 AND Model
e In the AND model, a passive process becomes active (i.e., its activation condition
IS

o fulfilled) only after a message from each process in its dependent set has arrived.
¢ In the AND model, a process can request more than one resource simultaneously and
therequest is satisfied only after all the requested resources are granted to the process.

e The requested resources may exist at different locations.




The out degree of a node in the WFG for AND model can be more than 1.

The presence of a cycle in the WFG indicates a deadlock in the AND model.

Each node of the WFG in such a model is called an AND node.

In the AND model, if a cycle is detected in the WFG, it implies a deadlock but not
viceversa. That is, a process may not be a part of a cycle, it can still be deadlocked.
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Fig: Deadlock in AND model
3.7.3 OR Model

e A process can make a request for numerous resources simultaneously and the
requestis satisfied if any one of the requested resources is granted.

e Presence of a cycle in the WFG of an OR model does not imply a
deadlockin the OR model.

e Inthe OR model, the presence of a knot indicates a deadlock.

| Deadlock in OR model: a process Pi is blocked if it has a pending OR request to be satisfied. |

e With every blocked process, there is an associated set of processes called
dependentset.

e A process shall move from an idle to an active state on receiving a grant
messagefrom any of the processes in its dependent set.

e A process is permanently blocked if it never receives a grant message from any of
theprocesses in its dependent set.

e Asetof processes S is deadlocked if all the processes in S are permanently blocked.

e In short, a process is deadlocked or permanently blocked, if the following
conditionsare met:

1. Each of the process is the set S is blocked.
2. The dependent set for each process in S is a subset of S.
3. No grant message is in transit between any two processes in set S.
e A blocked process P is the set S becomes active only after receiving a grant
messagefrom a process in its dependent set, which is a subset of S.

By R

o’




Fig: OR Model
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3.7.&#) Model (p out of g model)
e This is a variation of AND-OR model.

e This allows a request to obtain any k available resources from a pool of n
resources.Both the models are the same in expressive power.

e This favours more compact formation of a request.

e Every request in this model can be expressed in the AND-OR model and vice-versa.
(@)

e Note that AND requests for p resources can be stated as 4

presources can be stateqfl’gs

and OR requests for

Fig: p out of g Model

3.7.5 Unrestricted model

e No assumptions are made regarding the underlying structure of resource requests.

e In this model, only one assumption that the deadlock is stable is made and hence it
isthe most general model.

e This model helps separate concerns: Concerns about properties of the problem
(stability and deadlock) are separated from underlying distributed systems
computations (e.g., message passing versus synchronous communication).

3.8 CHANDY-MISRA-HAAS ALGORITHM FOR THE AND MODEL
This is considered an edge-chasing, probe-based algorithm.
It is also considered one of the best deadlock detection algorithms for distributed
systems.
If a process makes a request for a resource which fails or times out, the process generates a
probe message and sends it to each of the processes holding one or more of its requested
resources.
This algorithm uses a special message called probe, which is a triplet (i, j,k), denoting that it
belongs to a deadlock detection initiated for process Pi and it is being sent by the home
siteof process Pj to the home site of process Pk.
Each probe message contains the following information:
» the id of the process that is blocked (the one that initiates the probe message);
» the id of the process is sending this particular version of the probe message;
» the id of the process that should receive this probe message.
A probe message travels along the edges of the global WFG graph, and a deadlock is




detected when a probe message returns to the process that initiated it.

A process Pj is said to be dependent on another process Pk if there exists a sequence of
processes Pj, Pil1 , Pi2 , ..., Pim, Pksuch that each process except Pkin the sequence is
blocked and each process, except the Pj, holds a resource for which the previous process in
the sequence is waiting.

Process Pj is said to be locally dependent upon process Pk if Pj is dependent upon Pk
andboth the processes are on the same site.

When a process receives a probe message, it checks to see if it is also waiting for
resources

If not, it is currently using the needed resource and will eventually finish and release the
resource.

If it is waiting for resources, it passes on the probe message to all processes it knows to be
holding resources it has itself requested.

The process first modifies the probe message, changing the sender and receiver

ids. If a process receives a probe message that it recognizes as having initiated, it

knows there is a cycle in the system and thus, deadlock.

Data structures
Each process Pi maintains a boolean array, dependen ti, where dependent(j) is true only if
Piknows that Pj is dependent on it. Initially, dependen ti (j) is false for all i and j.

if P is locally dependent on itself
then declare a deadlock
else for all #; and F; such that
(a) F; is locally dependent upon ;. and
(b) P; is waiting on 7, and

(c) P‘, and P, are on different sites,

send a probe ({7, j. &) to the home site of P

On the receipt of a probe (i, §, k). the site takes
the following actions:
if
(d) P, is blocked, and
(e) dependent (i) is false, and

(f) Fy has not replied to all requests #;,

then
begin
dependent () = true;
if k=1

then declare that P, is deadlocked

else for all F,, and P, such that
(a”) Py is locally dependent upon P, and
(') P is waiting on &, and
(c™) P, and P, are on different sites,
send a probe (i. o, 1) to the home site of P,
end.

Fig : Chandy—Misra—Haas algorithm for the AND model

Performance analysis
In the algorithm, one probe message is sent on every edge of the WFG which
connects processes on two sites.




The algorithm exchanges at most m(n — 1)/2 messages to detect a deadlock that
involves m processes and spans over n sites.

The size of messages is fixed and is very small (only three integer words).

The delay in detecting a deadlock is O(n).

Advantages:
It is easy to implement.
Each probe message is of fixed
length. There is very little
computation.
There is very little overhead.
There is no need to construct a graph, nor to pass graph information to other sites.
This algorithm does not find false (phantom) deadlock.
There is no need for special data structures.

3.9 CHANDY MISRA HAAS ALGORITHM FOR THE OR MODEL
A Dblocked process determines if it is deadlocked by initiating a diffusion

computation. Two types of messages are used in a diffusion computation:
> query(i, j, k)
> reply(i, j, k)

denoting that they belong to a diffusion computation initiated by a process pi and are

being sent from process pj to process pk.
A Dblocked process initiates deadlock detection by sending query messages to all

processes in its dependent set.
If an active process receives a query or reply message, it discards it. When a blocked
process Pk receives a query(i, j, k) message, it takes the following actions:

1. If this is the first query message received by Pk for the deadlock detection

initiated by Pi, then it propagates the query to all the processes in its
dependent set and sets a local variable numk (i) to the number of query
messages sent.

2. If this is not the engaging query, then Pk returns a reply message to it
immediately provided Pk has been continuously blocked since it received
thecorresponding engaging query. Otherwise, it discards the query.

e Process Pk maintains a boolean variable waitk(i) that denotes the fact that it
has been continuously blocked since it received the last engaging query
fromprocess Pi.

e When a blocked process Pk receives a reply(i, j, K) message, it
decrementsnumk(i) only if waitk(i) holds.

e A process sends a reply message in response to an engaging query only after
ithas received a reply to every query message it has sent out for this engaging




query.
e The initiator process detects a deadlock when it has received reply messages
toall the query messages it has sent out.

Initiate a diffusion computation for a blocked process P;:
send query(i, i, j) to all processes P; in the dependent set DS; of P;;
num;(i) = |DS;|: wait;(i) = true;

When a blocked process P, receives a query(i, j, k):
if this is the engaging qguery for process P; then
send query(i, k, m) to all P,, in its dependent set DS, :
numg (i) = |DS,|: wait, (i) = true
else if wait, (i) then send a reply(i, k. j) to P;.

When a process P, receives a reply(i, j, k):
if waiz, (i) then
numg(i) := num (i) — 1;
if num, (i) = O then
if i = k then declare a deadlock
else send reply(i, k, m) to the process P,,
which sent the engaging query.

Fig: Chandy—Misra—Haas algorithm for the OR model

Performance analysis
For every deadlock detection, the algorithm exchanges e query messages and e reply

messages, where e = n(n — 1) is the number of edges.

UNIT IV CONSENSUS AND RECOVERY

Consensus and Agreement Algorithms: Problem Definition — Overview of Results — Agreement in a
Failure-Free System(Synchronous and Asynchronous) — Agreement in Synchronous Systems with
Failures; Checkpointing and Rollback Recovery: Introduction — Background and Definitions — Issues
in Failure Recovery — Checkpoint-based Recovery — Coordinated Checkpointing Algorithm —

— Algorithm for Asynchronous Checkpointing and Recovery

Problem definition

Agreement among the processes in a distributed system is a fundamental requirement for a
wide range of applications. Many forms of coordination require the processes to exchange
information to negotiate with one another and eventually reach a common understanding or
agreement, before taking application-specific actions. A classical example is that of the
commit decision in database systems, wherein the processes collectively decide whether to
commit or abort a transaction that they participate in.

We first state some assumptions underlying our study of agreement algorithms:

« Failure models Among the n processes in the system, at most f processes can be faulty. A
faulty process can behave in any manner allowed by the failure model assumed. The various
failure models — fail-stop, send omission and receive omission, and Byzantine failures.
 Synchronous/asynchronous communication If a failure-prone process chooses to send a
message to process Pi but fails, then Pi cannot detect the non-arrival of the message in an




asynchronous system. In a synchronous system, however, the scenario in which a message
has not been sent can be recognized by the intended recipient, at the end of the round.

» Network connectivity The system has full logical connectivity, i.e., each process can
communicate with any other by direct message passing.

« Sender identification A process that receives a message always knows the identity of the
sender process.

« Channel reliability The channels are reliable, and only the processes may fail (under one of
various failure models).

 Authenticated vs. non-authenticated messages With unauthenticated messages, when a
faulty process relays a message to other processes, (i) it can forge the message and claim that
it was received from another process, and (ii) it can also tamper with the contents of a
received message before relaying it. When a process receives a message, it has no way to
verify its authenticity. An unauthenticated message is also called an oral message or an
unsigned message. Using authentication via techniques such as digital signatures, it is easier
to solve the agreement problem because, if some process forges a message or tampers with
the contents of a received message before relaying it, the recipient can detect the forgery or
tampering. Thus, faulty processes can inflict less damage.

« Agreement variable The agreement variable may be boolean or multivalued, and need not
be an integer.

The Byzantine agreement

The Byzantine agreement problem requires a designated process, called the source process,
with an initial value

Problem definition agreement with the other processes about its initial value, subject to the
following conditions:

« Agreement All non-faulty processes must agree on the same value.

« Validity If the source process is non-faulty, then the agreed upon value by all the non-faulty
processes must be the same as the initial value of the source.

« Termination Each non-faulty process must eventually decide on a value. The validity
condition rules out trivial solutions, such as one in which the agreed upon value is a constant.
The consensus problem

The consensus problem differs from the Byzantine agreement problem in that each process
has an initial value and all the correct processes must agree on a single value




» Agreement All non-faulty processes must agree on the same (single) value.

« Validity If all the non-faulty processes have the same initial value, then the agreed upon
value by all the non-faulty processes must be that same value.

* Termination Each non-faulty process must eventually decide on a value.

The interactive consistency problem

The interactive consistency problem differs from the Byzantine agreement problem in that
each process has an initial value, and all the correct processes must agree upon a set of
values, with one value for each process

» Agreement All non-faulty processes must agree on the same array of values A[vl...vn]

» Validity If process i is non-faulty and its initial value is vi, then all nonfaulty processes
agree on vi as the ith element of the array A. If process j is faulty, then the non-faulty
processes can agree on any value for A[j].

* Termination Each non-faulty process must eventually decide on the array A

Overview of results:

Failure Synchronous system Asynchronous system
mode (message-passing and (message-passing and
sharedmemory) sharedmemory)
No Failure agreement attainable; agreement attainable;
common knowledge attainable concurrent  common  knowledge
Crash Failure | agreement attainable agreement not attainable
f < n processes
Byzantine agreement attainable agreement not attainable
Failure f <[(n - 1)/3] Byzantine processes

AGREEMENT IN A FAILURE-FREE SYSTEM (SYNCHRONOUS OR
ASYNCHRONOUS)

In a failure-free system, consensus can be reached by collecting information from the
different processes, arriving at a “decision,” and distributing this decision in the system.

A distributed mechanism would have each process broadcast its values to others, and each
process computes the same function on the values received.

The decision can be reached by using an applicationspecific function — some simple examples
being the majority, max, and min functions. Algorithms to collect the initial values and then
distribute the decision may be based on the token circulation on a logical ring, or the three-
phase

Consensus and agreement algorithms tree-based broadcast—converge cast—broadcast, or direct
communication with all nodes.




AGREEMENT IN (MESSAGE-PASSING) SYNCHRONOUS SYSTEMS WITH
FAILURES

CONSENSUS ALGORITHM FOR CRASH FAILURES (SYNCHRONOUS SYSTEM)
* The consensus algorithm for n processes where up to f processes where f < n may fail in a
fail stop failure model.

* Here the consensus variable x is integer value; each process has initial value xi. If up to f
failures are to be tolerated than algorithm has f+1 rounds, in each round a process i sense the
value of its variable xi to all other processes if that value has not been sent before.

* So, of all the values received within that round and its own value xi at that start of the round
the process takes minimum and updates xi occur f + 1 rounds the local value xi guaranteed to
be the consensus value.

* If one process is faulty, among three processes then f = 1. So the agreement requires f + 1
that is equal to two rounds.

« If it is faulty let us say it will send O to 1 process and 1 to another process i, j and k. Now,
on receiving one on receiving 0 it will broadcast 0 over here and this particular process on
receiving 1 it will broadcast 1 over here.

* So, this will complete one round in this one round and this particular process on receiving 1
it will send 1 over here and this on the receiving 0 it will send 0 over here.

(global constants)

integer: f; // maximum number of crash failures tolerated
(local variables)

integer: x <— local value;

(1)  Process P; (1 <i < n) executes the consensus algorithm for up to
f crash failures:
(la) for round from 1 to f+ 1 do

(1b) if the current value of x has not been broadcast then

(1c) broadcast(x);

(1d) y; <— value (if any) received from process j in this round;
(le) X «— miny;(x,y,);

(1f)  output x as the consensus value.

Algorithm 14.1 Consensus with up to f fail-stop processes in a system of n processes, n > f [8]. Code
shown is for process P;, 1 <i < n.

* The agreement condition is satisfied because in the f+ 1 rounds, there must be at least one round in which
no process failed.

* In this round, say round r, all the processes that have not failed so far succeed in broadcasting their
values, and all these processes take the minimum of the values broadcast and received in that round.

* Thus, the local values at the end of the round are the same, say x r i for all non-failed processes.

* In further rounds, only this value may be sent by each process at most once, and no process 1 will update
its value X r 1.




* The validity condition is satisfied because processes do not send fictitious values in this failure model.

* For all i, if the initial value is identical, then the only value sent by any process is the value that has been
agreed upon as per the agreement condition.

* The termination condition is seen to be satisfied.

Complexity: The complexity of this particular algorithm is it requires f + 1 rounds where f < n and the
number of messages is O(n2)in each round and each message has one integers hence the total number

of messages is O((f+1)- n 2) is the total number of rounds and in each round n 2 messages are required.

Consensus algorithms for Byzantine failures (synchronous system)

*  Total of n processes, at most f of which can be faulty

*  Reliable communication medium

*  Fully connected

*  Receiver always knows the identity of the sender of a message
*  Byzantine faults

* Ineach round, a process receives messages, perform computation and sends

messages

Solution to Byzantine Agreement problem

* The solution is first defined and solved by Lamport.

* Pease showed that in a fully connected network, it is impossible to reach an
agreement if number of faulty processes * f” exceeds (n-1)/3 where n is the

number of processes.

. ie f<=(n-1)/3

Commander

Commander

(a) (b)

O Malicious process O Correct process

................... = First round exchange Second round exchange




STEPS FOR BYZANTINE GENERALS (ITERATIVE FORMULATION),
SYNCHRONOUS, MESSAGE-PASSING:

(variables)
boolean: v «— initial value;

integer: f «— maximum number of malicious processes, < [—";1 I:
tree of boolean:

@ lovel 0 root is vE

init: Where L = ()

@ level h(f > h > 0) nodes: for each v}- at level h — 1 = sizeof (L), its n — 2 — sizeof (L) descendants at level h are V;oncar( b

such that k  j, i and k is not a member of list L.

(message type)
OM(v, Dests, List, faulty), where the parameters are as in the recursive formulation.

. Yk

(1) Initiator (i.e., Commander) initiates Oral Byzantine agreement:
(1a) send OM(v, N — {i}, (P;) . f) o N — {i};
(1b) return(v).

) (Non-initiator, i.e., Lieutenant) receives Oral Message OM:

a) for rnd = 0 to f do

b) for each message OM that arrives in this round, do

c) receive OM(v, Dests, L = (Pk1 s 'pkf*l—fau!ty

/[ faulty + round = f, | Dests}, +sizeof (L) = n

(2
(2
(2
(2 ) faulty) from Pkl:
(2d) v;‘:g%) —— v, [[ sizeof (L) + faulty = f + 1. fill in estimate.

2 [ NP g i md e f-
(2e) send OM(v, Dests — {i}, (P;, pkl 3% 'Pkr'+1—fau!ty>' faulty — 1) to Dests — {i} if mnd < f;
(2f) for level = f — 1 down to 0 do

(
(

2g) foreachofthe 1. (n.— 2) sl = (level + 1)) nodes v){- in level level, do

)
. ot .k
2h) vhix # i, x(@L) = majarty, o concat((x)‘L);yag,'(V,!{- V;oncat((X) )):




STEPS FOR BYZANTINE GENERALS (RECURSIVE FORMULATION),
SYNCHRONOUS, MESSAGE-PASSING:

(variables)

boolean: v «— initial value;

integer: f «— maximum number of malicious processes, < |(n — 1)/3]:

(message type)

Oral Msg(v, Dests, List, faulty), where

v is a boolean,

Dests is a set of destination process ids to which the message is sent,

List is a list of process ids traversed by this message, ordered from most recent to earliest,
faulty is an integer indicating the number of malicious processes to be tolerated.

Oral Msg(f ), where f > 0:

o The algorithm is initiated by the Commander, who sends his source value v to all other processes using a OM(v, N, (i), f ) message. The
commander returns his own value v and terminates.

e [Recursion unfolding:] For each message of the form OM(v; , Dests, List, f ' ) teceived in this round from some process j, the process i uses the
value Vj It recelves from the source, and using that value, acts as a‘new source. (If no value is received, a default value is assumed.)
To act as a new source, the process i initiates Oral-Msg(f' — 1), wherein itsends
OM(v;, Dests — {i}, concat({i), L), (f - 1))
to destinations not in concat((f), L)
in the next round.

o [Recursion folding:] For each message of the form OM{vj. Dests, List, f') received in Step 2, each process i has computed the agreement

value v, for each k-not in List-and k +# f.coresponding to the value received from Py after traversing the nodes in List, at one level lower in
the recursion. If it raceives no value in this round, it uses a default value. Process i then uses the value majorityy ) jr ki(V; . Vi) as the
agreement value and returns it to the naxt-higher level in the recursive invocation.

Oral_Msg(0):

o [Recursion unfolding:] Process acts as a source and sends its value to each other process.

0 [Recursion folding:] Each process uses the value it receives from the other sources, and uses that value as the agreement value. If no value is
feceived, 3 default value is assumed.

CODE FOR THE PHASE KING ALGORITHM:

Each phase has a unique "phase king" derived, say, from
PID.Each phase has two rounds:

e 1in 1st round, each process sends its estimate to all other processes.

e 2 in 2nd round, the "Phase king" process arrives at an estimate based on the
valuesit received in 1st round, and broadcasts its new estimate to all others.
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Fig. Message pattern for the phase-king algorithm.

PHASE KING ALGORITHM CODE:

(variables)

boolean: v «—— initial value;

integer: f +—— maximum number of malicious processes, f < [n/4];

(1) Each process executes the following f + 1 phases, where f < n/4:

(1a) for phase = 1to f +1 do

(1b) Execute the following Round 1 actions: // actions in round one of each phase

(1c) broadcast v to all processes;

(1d) await value v; from each process Pj;

(1e) majority +—— the value among the v; that occurs > n/2 times (default if no maj.);

(1f) mult — number of times that majority occurs;

(1g) Execute the following Round 2 actions: // actions in round two of each phase

(1h) if i = phase then // only the phase leader executes this send step

(1i) broadcast majority to all processes;

(1j) receive tiebreaker from Pp,p,s (default value if nothing is received);

(1k) if mult > n/2+f then

(11) vV «—— majority;

(1m) else v —— tiebreaker;

(1n) if phase = f + 1 then

(10) output decision value v.

(f + 1) phases, (f + 1)[(n - 1)(n + 1)] messages, and can tolerate up to f < dn=4e
malicious processes

Correctness Argument

e 1 Among f+ 1 phases, at least one phase k where phase-king is non-malicious.

e 2 In phase k, all non-malicious processes Pi and Pj will have same




estimate ofconsensus value as Pk does.
o Piand Pj use their own majority values. Pi 's mult > n=2 + f)

o Pi uses its majority value; Pj uses phase-king's tie-breaker value. (Pi’s mult >
n=2 +f, Pj 's mult > n=2 for same value)

o Piand Pj use the phase-king's tie-breaker value. (In the phase in which Pk
isnon- malicious, it sends same value to Pi and Pj )

In all 3 cases, argue that Pi and Pj end up with same value as estimate

e If all non-malicious processes have the value x at the start of a phase, they
willcontinue to have x as the consensus value at the end of the phase.
Check pointing and rollback recovery: Introduction

e Rollback recovery protocols restore the system back to a consistent state after a failure,

e |t achieves fault tolerance by periodically saving the state of a process during the failure-
free execution

e |t treats a distributed system application as a collection of processes that communicate
over a network

Checkpoints

The saved state is called a checkpoint, and the procedure of restarting from a previously check
pointed state is called rollback recovery. A checkpoint can be saved on either the stable storage
or the volatile storage
Why is rollback recovery of distributed systems complicated?
Messages induce inter-process dependencies during failure-free operation
Rollback propagation
The dependencies among messages may force some of the processes that did not fail to roll back.
This phenomenon of cascaded rollback is called the domino effect.

Uncoordinated check pointing

If each process takes its checkpoints independently, then the system cannot avoid the domino
effect — this scheme is called independent or uncoordinated check pointing
Techniques that avoid domino effect

1. Coordinated check pointing rollback recovery - Processes coordinate their checkpoints to
form a system-wide consistent state

2. Communication-induced check pointing rollback recovery - Forces each process to take
checkpoints based on information piggybacked on the application.

3. Log-based rollback recovery - Combines check pointing with logging of non-
deterministic events

* relies on piecewise deterministic (PWD) assumption.
Background and definitions

System model

e A distributed system consists of a fixed number of processes, P1, P2,... PN , which
communicate only through messages.




Processes cooperate to execute a distributed application and interact with the outside
world by receiving and sending input and output messages, respectively.
Rollback-recovery protocols generally make assumptions about the reliability of theinter-
process communication.

Some protocols assume that the communication uses first-in-first-out (FIFO) order, while
other protocols assume that the communication subsystem can lose, duplicate, or reorder
messages.

Rollback-recovery protocols therefore must maintain information about the internal
interactions among processes and also the external interactions with the outside world.

Cutput message
Input message

Outside worlkd

Distributed system

An example of a distributed system with three processes.

A local checkpoint

All processes save their local states at certain instants of time
A local check point is a snapshot of the state of the process at a given instance
Assumption

— A process stores all local checkpoints on the stable storage

— A process Is able to roll back to any of its existing local checkpoints

Ci,k — The kth local checkpoint at process Pi

Ci,0 — A process Pi takes a checkpoint Ci,0 before it starts execution

Consistent states

A global state of a distributed system is a collection of the individual states of all
participating processes and the states of the communication channels
Consistent global state

— a global state that may occur during a failure-free execution of distribution of
distributed computation

— if a process™s state reflects a message receipt, then the state of the
corresponding sender must reflect the sending of the message
A global checkpoint is a set of local checkpoints, one from each process

A consistent global checkpoint is a global checkpoint such that no message is sent by a
process after taking its local point that is received by another process before taking its
checkpoint.




Consistent states - examples

Consistent state Inconsistent state
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For instance, Figure shows two examples of global states.
The state in fig (a) is consistent and the state in Figure (b) is inconsistent.

Note that the consistent state in Figure (a) shows message ml to have been sent but not
yet received, but that is alright.

The state in Figure (a) is consistent because it represents a situation in which every
message that has been received, there is a corresponding message send event.

The state in Figure (b) is inconsistent because process P2 is shown to have received m2
but the state of process P1 does not reflect having sent it.

Such a state is impossible in any failure-free, correct computation. Inconsistent states
occur because of failures.

Interactions with outside world

A distributed system often interacts with the outside world to receive input data or deliver the
outcome of a computation. If a failure occurs, the outside world cannot be expected to roll back.
For example, a printer cannot roll back the effects of printing a character

Outside World Process (OWP)

It is a special process that interacts with the rest of the system through message passing.

It is therefore necessary that the outside world see a consistent behavior of the system
despite failures.

Thus, before sending output to the OWP, the system must ensure that the state from
which the output is sent will be recovered despite any future failure.

A common approach is to save each input message on the stable storage before allowing the

application program to process it.

An interaction with the outside world to deliver the outcome of a computation is shown on the

process-line by the symbol “||”.
Different types of Messages

1. In-transit message

e messages that have been sent but not yet received




2. Lost messages

e messages whose “send” is done but “receive™ is undone due to rollback
3. Delayed messages

e messages whose “receive™ is not recorded because the receiving process was
either down or the message arrived after rollback
4. Orphan messages

e messages with “receive” recorded but message “send” not recorded
e do not arise if processes roll back to a consistent global state
5. Duplicate messages

e arise due to message logging and replaying during process recovery

Messages — example
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In-transit messages

In Figure , the global state {C1,8, C2, 9, C3,8, C4,8} shows that message m1 has been sent but
not yet received. We call such a message an in-transit message. Message m2 is also an in-transit
message.

Delayed messages

Messages whose receive is not recorded because the receiving process was either down or the
message arrived after the rollback of the receiving process, are called delayed messages. For
example, messages m2 and m5 in Figure are delayed messages.

Lost messages

Messages whose send is not undone but receive is undone due to rollback are called lost
messages. This type of messages occurs when the process rolls back to a checkpoint prior to




reception of the message while the sender does not rollback beyond the send operation of the
message. In Figure , message m1 is a lost message.
Duplicate messages

e Duplicate messages arise due to message logging and replaying during process
recovery. For example, in Figure, message m4 was sent and received before the
rollback. However, due to the rollback of process P4 to C4,8 and process P3 to C3,8,
both send and receipt of message m4 are undone.

e When process P3 restarts from C3,8, it will resend message m4.

e Therefore, P4 should not replay message m4 from its log.
e If P4 replays message m4, then message m4 is called a duplicate message.
Issues in failure recovery

In a failure recovery, we must not only restore the system to a consistent state, but also
appropriately handle messages that are left in an abnormal state due to the failure and recovery
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* The computation comprises of three processes Pi, Pj , and Pk, connected through a
communication network. The processes communicate solely by exchanging messages over fault
free, FIFO communication channels.
* Processes Pi, Pj , and Pk, have taken checkpoints {Ci,0, Ci,1}, {Cj,0, Cj,1, C;,2}, and {Ck,0,
Ck,1}, respectively, and these processes have exchanged messages A to J
Suppose process Pi fails at the instance indicated in the figure. All the contents of the volatile
memory of Pi are lost and, after Pi has recovered from the failure, the system needs to be
restored to a consistent global state from where the processes can resume their execution.
* Process Pi’s state is restored to a valid state by rolling it back to its most recent checkpoint
Ci,1. To restore the system to a consistent state, the process Pj rolls back to checkpoint Cj,1
because the rollback of process Pi to checkpoint Ci,1 created an orphan message H (the receive
event of H is recorded at process Pj while the send event of H has been undone at process Pi).
* Pj does not roll back to checkpoint Cj,2 but to checkpoint Cj,1. An orphan message I is created
due to the roll back of process Pj to checkpoint Cj,1. To eliminate this orphan message, process
Pk rolls back to checkpoint Ck,1.
* Messages C, D, E, and F are potentially problematic. Message C is in transit during the failure
and it is a delayed message. The delayed message C has several possibilities: C might arrive at
process Pi before it recovers, it might arrive while Pi is recovering, or it might arrive after Pi has




completed recovery. Each of these cases must be dealt with correctly.
» Message D is a lost message since the send event for D is recorded in the restored state for
process Pj , but the receive event has been undone at process Pi. Process Pj will not resend D
without an additional mechanism.
» Messages E and F are delayed orphan messages and pose perhaps the most serious problem of
all the messages. When messages E and F arrive at their respective destinations, they must be
discarded since their send events have been undone. Processes, after resuming execution from
their checkpoints, will generate both of these messages.
* Lost messages like D can be handled by having processes keep a message log of all the sent
messages. SO when a process restores to a checkpoint, it replays the messages from its log to
handle the lost message problem.
* Overlapping failures further complicate the recovery process. If overlapping failures are to be
tolerated, a mechanism must be introduced to deal with amnesia and the resulting
inconsistencies.

Checkpoint-based recovery

Checkpoint-based rollback-recovery techniques can be classified into three categories:
1. Uncoordinated checkpointing
2. Coordinated checkpointing

3. Communication-induced checkpointing

1. Uncoordinated Checkpointing
e Each process has autonomy in deciding when to take checkpoints
e Advantages
The lower runtime overhead during normal execution
e Disadvantages
1. Domino effect during a recovery

2. Recovery from a failure is slow because processes need to iterate to find a
consistent set of checkpoints

3. Each process maintains multiple checkpoints and periodically invoke a
garbage collection algorithm

4. Not suitable for application with frequent output commits

e The processes record the dependencies among their checkpoints caused by message
exchange during failure-free operation

e The following direct dependency tracking technique is commonly used in uncoordinated
checkpointing.
Direct dependency tracking technique

e Assume each process Pi starts its execution with an initial checkpoint Ci,0

e [i,x: checkpoint interval, interval between Ci,x—1 and Ci,x




e When Pj receives a message m during Ij,y , it records the dependency from [i,x to Ij,y,
which is later saved onto stable storage when Pj takes Cj,y
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e When a failure occurs, the recovering process initiates rollback by broadcasting a
dependency request message to collect all the dependency information maintained by
each process.

e When a process receives this message, it stops its execution and replies with the
dependency information saved on the stable storage as well as with the dependency
information, if any, which is associated with its current state.

e The initiator then calculates the recovery line based on the global dependency
information and broadcasts a rollback request message containing the recovery line.

® Upon receiving this message, a process whose current state belongs to the recovery line
simply resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by
the recovery line.
2. Coordinated Checkpointing

In coordinated checkpointing, processes orchestrate their checkpointing activities so that all
local checkpoints form a consistent global state
Types

1. Blocking Checkpointing: After a process takes a local checkpoint, to prevent orphan
messages, it remains blocked until the entire checkpointing activity is complete
Disadvantages: The computation is blocked during the checkpointing

2. Non-blocking Checkpointing: The processes need not stop their execution while taking
checkpoints. A fundamental problem in coordinated checkpointing is to prevent a process
from receiving application messages that could make the checkpoint inconsistent.

Example (a) : Checkpoint inconsistency

e Message m is sent by PO after receiving a checkpoint request from the checkpoint
coordinator
e Assume m reaches P1 before the checkpoint request

e This situation results in an inconsistent checkpoint since checkpoint C1,x shows the
receipt of message m from PO, while checkpoint €0,x does not show m being sent from
PO

Example (b) : A solution with FIFO channels




e If channels are FIFO, this problem can be avoided by preceding the first post-checkpoint
message on each channel by a checkpoint request, forcing each process to take a
checkpoint before receiving the first post-checkpoint message

Coordinated Checkpointing

Initiator Initiator
| = ]

£ & | SR

= Checkpoint request .. Checkpeoint request

2} = N » . \
Po Cox Po Cox. N\

\ K -
N r72
N\

ey .-‘I N o A
a) r (b)
Impossibility of min-process non-blocking checkpointing

e A min-process, non-blocking checkpointing algorithm is one that forces only a minimum
number of processes to take a new checkpoint, and at the same time it does not force any
process to suspend its computation.

Algorithm

e The algorithm consists of two phases. During the first phase, the checkpoint initiator
identifies all processes with which it has communicated since the last checkpoint and
sends them a request.

e Upon receiving the request, each process in turn identifies all processes it has
communicated with since the last checkpoint and sends them a request, and so on, until
no more processes can be identified.

e During the second phase, all processes identified in the first phase take a checkpoint. The
result is a consistent checkpoint that involves only the participating processes.

e In this protocol, after a process takes a checkpoint, it cannot send any message until the
second phase terminates successfully, although receiving a message after the checkpoint
has been taken is allowable.

3. Communication-induced Checkpointing

Communication-induced checkpointing is another way to avoid the domino effect, while
allowing processes to take some of their checkpoints independently. Processes may be forced to
take additional checkpoints

Two types of checkpoints

1. Autonomous checkpoints
2. Forced checkpoints

The checkpoints that a process takes independently are called local checkpoints, while those that
a process is forced to take are called forced checkpoints.

e Communication-induced check pointing piggybacks protocol- related information on




each application message

e The receiver of each application message uses the piggybacked information to determine
if it has to take a forced checkpoint to advance the global recovery line

e The forced checkpoint must be taken before the application may process the contents of
the message

e In contrast with coordinated check pointing, no special coordination messages are
exchanged

Two types of communication-induced checkpointing

1. Model-based checkpointing
2. Index-based checkpointing.
Model-based checkpointing

e Model-based checkpointing prevents patterns of communications and checkpoints
that could result in inconsistent states among the existing checkpoints.

e No control messages are exchanged among the processes during normal operation.
All information necessary to execute the protocol is piggybacked on application
messages

e There are several domino-effect-free checkpoint and communication model.

e The MRS (mark, send, and receive) model of Russell avoids the domino effect by
ensuring that within every checkpoint interval all message receiving events precede
all message-sending events.

Index-based checkpointing.

e Index-based communication-induced checkpointing assigns monotonically increasing
indexes to checkpoints, such that the checkpoints having the same index at different
processes form a consistent state.

KOO AND TOUEG COORDINATED CHECKPOINTING AND RECOVERY
TECHNIQUE:
e Koo and Toueg coordinated check pointing and recovery technique takes a consistent set
of checkpoints and avoids the domino effect and livelock problems during the recovery.
« Includes 2 parts: the check pointing algorithm and the recovery algorithm

A. The Checkpointing Algorithm
The checkpoint algorithm makes the following assumptions about the distributed system:
e Processes communicate by exchanging messages through communication channels.
e Communication channels are FIFO.

e Assume that end-to-end protocols (the sliding window protocol) exist to handle with
message loss due to rollback recovery and communication failure.

e Communication failures do not divide the network.

The checkpoint algorithm takes two kinds of checkpoints on the stable storage: Permanent and
Tentative.




A permanent checkpoint is a local checkpoint at a process and is a part of a consistent global
checkpoint.
A tentative checkpoint is a temporary checkpoint that is made a permanent checkpoint on the
successful termination of the checkpoint algorithm.
The algorithm consists of two phases.

First Phase

1. An initiating process Pi takes a tentative checkpoint and requests all other processes to
take tentative checkpoints. Each process informs Pi whether it succeeded in taking a
tentative checkpoint.

2. A process says “no” to a request if it fails to take a tentative checkpoint

3. If Pi learns that all the processes have successfully taken tentative checkpoints, Pi decides
that all tentative checkpoints should be made permanent; otherwise, Pi decides that all the
tentative checkpoints should be thrown-away.

Second Phase

1. Piinforms all the processes of the decision it reached at the end of the first phase.
2. A process, on receiving the message from Pi will act accordingly.

3. Either all or none of the processes advance the checkpoint by taking permanent
checkpoints.
4. The algorithm requires that after a process has taken a tentative checkpoint, it cannot
send messages related to the basic computation until it is informed of Pi’s decision.
Correctness: for two reasons

i. Either all or none of the processes take permanent checkpoint
ii. No process sends message after taking permanent checkpoint
An Optimization

The above protocol may cause a process to take a checkpoint even when it is not necessary for
consistency. Since taking a checkpoint is an expensive operation, we avoid taking checkpoints.

B. The Rollback Recovery Algorithm

The rollback recovery algorithm restores the system state to a consistent state after a failure. The
rollback recovery algorithm assumes that a single process invokes the algorithm. It assumes that
the checkpoint and the rollback recovery algorithms are not invoked concurrently. The rollback
recovery algorithm has two phases.

First Phase

1. An initiating process Pi sends a message to all other processes to check if they all are
willing to restart from their previous checkpoints.

2. A process may reply “no” to a restart request due to any reason (e.g., it is already
participating in a check pointing or a recovery process initiated by some other process).

3. If Pi learns that all processes are willing to restart from their previous checkpoints, Pi
decides that all processes should roll back to their previous checkpoints. Otherwise,

4. Pi aborts the roll back attempt and it may attempt a recovery at a later time.




Second Phase
1. Pi propagates its decision to all the processes.
2. On receiving Pi’s decision, a process acts accordingly.

3. During the execution of the recovery algorithm, a process cannot send messages related
to the underlying computation while it is waiting for Pi’s decision.
Correctness: Resume from a consistent state

Optimization: May not to recover all, since some of the processes did not change anything
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The above protocol, in the event of failure of process X, the above protocol will require
processes X, Y, and Z to restart from checkpoints x2, y2, and z2, respectively.

Process Z need not roll back because there has been no interaction between process Z and the
other two processes since the last checkpoint at Z.

ALGORITHM FOR ASYNCHRONOUS CHECKPOINTING AND RECOVERY:

The algorithm of Juang and Venkatesan for recovery in a system that uses asynchronous check
pointing.
A. System Model and Assumptions

The algorithm makes the following assumptions about the underlying system:

e The communication channels are reliable, deliver the messages in FIFO order and have
infinite buffers.

e The message transmission delay is arbitrary, but finite.
e Underlying computation/application is event-driven: process P is at state s, receives
message m, processes the message, moves to state s° and send messages out. So the

triplet (s, m, msgs_sent) represents the state of P




Two type of log storage are maintained:

— Volatile log: short time to access but lost if processor crash. Move to stable log
periodically.
— Stable log: longer time to access but remained if crashed

A.Asynchronous Check pointing

— After executing an event, the triplet is recorded without any synchronization with
other processes.
— Local checkpoint consist of set of records, first are stored in volatile log, then
moved to stable log.
B. The Recovery Algorithm
Notations and data structure
The following notations and data structure are used by the algorithm:

* RCVDi«j(CkPti) represents the number of messages received by processor pi from processor
pj , from the beginning of the computation till the checkpoint CkPti.

* SENTi—j(CkPti) represents the number of messages sent by processor pi to processor pj , from
the beginning of the computation till the checkpoint CkPti.
Basic idea

e Since the algorithm is based on asynchronous check pointing, the main issue in the
recovery is to find a consistent set of checkpoints to which the system can be restored.

e The recovery algorithm achieves this by making each processor keep track of both the
number of messages it has sent to other processors as well as the number of messages it
has received from other processors.

e Whenever a processor rolls back, it is necessary for all other processors to find out if any
message has become an orphan message. Orphan messages are discovered by comparing
the number of messages sent to and received from neighboring processors.

For example, if RCVDi«j(CkPti) > SENTj—1(CkPtj) (that is, the number of messages received
by processor pi from processor pj is greater than the number of messages sent by processor pj to
processor pi, according to the current states the processors), then one or more messages at
processor pj are orphan messages.

The Algorithm

When a processor restarts after a failure, it broadcasts a ROLLBACK message that it had failed
Procedure RollBack _Recovery

processor pi executes the following:

STEP (a)

if processor pi is recovering after a failure then

CkPti := latest event logged in the stable storage

else

CkPti := latest event that took place in pi {The latest event at pi can be either in stable or in




volatile storage.}
end if

STEP (b)

for k=1 1to N {N is the number of processors in the system} do
for each neighboring processor pj do
compute SENTi—j(CkPti)

send a ROLLBACK(i, SENTi—j(CkPti)) message to pj
end for
for every ROLLBACK(j, ¢) message received from a neighbor j do
if RCVDi«—j(CkPti) > ¢ {Implies the presence of orphan messages} then

find the latest event e such that RCVDi«j(e) = ¢ {Such an event e may be in the volatile storage
or stable storage.}

CkPti :=e

end if

end for

end for{for k}

D. An Example

Consider an example shown in Figure 2 consisting of three processors. Suppose processor Y
fails and restarts. If event ey?2 is the latest checkpointed event at Y, then Y will restart from the
state corresponding to ey2.
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Figure 2: An example of Juan-Venkatesan algorithm.

e Because of the broadcast nature of ROLLBACK messages, the recovery algorithm is
initiated at processors X and Z.

e Initially, X, Y, and Z set CkPtX « ex3, CkPtY « ey2 and CkPtZ «— ez2, respectively,
and X, Y, and Z send the following messages during the first iteration:




e Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

e X sends ROLLBACK(X,2) to Y and ROLLBACK(X,0) to Z;
e Zsends ROLLBACK(Z,0) to X and ROLLBACK(Z,1) to Y.

Since RCVDX«Y (CkPtX) = 3 > 2 (2 is the value received in the ROLLBACK(Y,2) message
from Y), X will set CkPtX to ex2 satisfying RCVDX«Y (ex2) = 1<2.

Since RCVDZ«Y (CkPtZ) =2 > 1, Z will set CkPtZ to ezl satisfying RCVDZ«+Y (ezl) =1 <
1.

AtY, RCVDY—X(CkPtY ) =1 <2 and RCVDY«Z(CkPtY ) =1 = SENTZ<Y (CkPtZ).

Y need not roll back further.
In the second iteration, Y sends ROLLBACK(Y,2) to X and ROLLBACK(Y,1) to Z;

Z sends ROLLBACK(Z,1) to Y and ROLLBACK(Z,0) to X;

X sends ROLLBACK(X,0) to Z and ROLLBACK(X, 1)to Y.

If Y rolls back beyond ey3 and loses the message from X that caused ey3, X can resend this
message to Y because ex2 is logged at X and this message available in the log. The second and
third iteration will progress in the same manner. The set of recovery points chosen at the end of
the first iteration, {ex2, ey2, ez1}, is consistent, and no further rollback occurs.
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